
Université libre de Bruxelles

Evaluating Impact of Reconfiguration
Speed on FPGA Performance

Author:
Chris Lample

Supervisors:
Prof. Joël Goossens

Prof. Dragomir Milojevic

Additional jury member:
Prof. Bernard Fortz

August 14, 2021

ACKNOWLEDGEMENTS

The completion of this thesis was a challenging process for me, and it was only with a large
amount of support from others that I was able to complete this work.
Thank you Professor Goossens and Professor Milojevic for introducing me to such an excit-
ing idea for a thesis and for sharing your expertise. It was a real pleasure to be able to work
with both of you.
Thank you also to my family - I really appreciate your love and support over all of these
years.
Thank you Mario for spending your day off work reading my thesis and giving me com-
ments.
A very special thank you is needed for Marie. For every hour I spent working on this thesis,
I must have spent two hours procrastinating or worrying about it. I appreciate you always
beingwilling to talk about it. Thank you for your boundless patience and support in helping
me get through this.

ii

LIST OF FIGURES

2.1 FPGA logic cell . 7
2.2 Loop unrolling optimization . 10
2.3 FPGA resources vs. performance for hash functions 10
2.4 Improvements in FPGA reconfiguration speed 14
2.5 Wire lengths in 3D packaging . 15
2.6 Foveros 3D packaging . 15
2.7 Optimizing execution time with prefetching 17

3.1 Gap in makespan between simplified and original model 31

4.1 Example schedule with slow reconfiguration 34
4.2 Example schedule with medium reconfiguration speed 35
4.3 Example schedule with fast reconfiguration speed 36
4.4 Example schedule, makespan vs. reconfiguration speed 37
4.5 Average makespan with respect to reconfiguration time per resource unit . 40
4.6 Average number of SW implementations used vs. reconfiguration speed . . 41
4.7 Average FPGA implementation size vs. reconfiguration speed 42
4.8 Average number of FPGA partitions vs. reconfiguration speed 43
4.9 Effect of improving FPGA implementation execution time 44
4.10 Effect of reducing FPGA implementation performance 45
4.11 Average effect of splitting tasks on schedule makespan 48

iii

LIST OF TABLES

3.1 Model parameters . 23

4.1 Scheduler runtime . 38
4.2 MAPE values for the iterative scheduler and simplified MILP formulation . 39
4.3 Example of task splitting . 46

iv

CONTENTS

1 Introduction 1
1.1 Background . 1
1.2 Research Questions . 3
1.3 Research Method . 3
1.4 Structure of Thesis . 4

2 Background 6
2.1 FPGA’s . 6

2.1.1 FPGA’s In ComparisonWith Software 7
2.1.2 FPGA Resource vs. Performance Trade-Offs 9
2.1.3 Dynamic Partial Reconfiguration 11

2.2 Improving Reconfiguration Speed . 13
2.3 3D Packaging . 14
2.4 DPR Schedulers . 16

2.4.1 Deiana et. al Scheduler . 16
2.4.2 FRED Real Time Framework . 18

3 Proposed Solution 20
3.1 Definition of the Model . 20

3.1.1 Relevant Aspects To Model . 20
3.1.2 Model Definition . 22

3.2 Applying the Deiana et. al Scheduler . 24
3.3 Determining Schedule Lower Bounds . 26

3.3.1 Simplifying The Scheduling Problem 27
3.3.2 MILP Formulation . 27
3.3.3 Verifying That A Lower Bound Is Provided 29
3.3.4 Remarks on the Simplified MILP Formulation 30

3.4 Generation of Workloads and Model Parameters 31

v

CONTENTS CONTENTS

4 Results 33
4.1 Implementation and Setup . 33
4.2 Example Schedules . 33
4.3 Scheduler Evaluation . 37
4.4 Overall Impact of Reconfiguration Speed 39
4.5 Effects of Adjusting Resource vs. Performance Trade-Off 43
4.6 Effects of Restructuring Applications . 45

5 Towards a Lagrangian Based Scheduler 49
5.1 Introduction . 49
5.2 Connection with 𝑅‖𝐶𝑚𝑎𝑥 . 51
5.3 Lagrangian Relaxation of the Simplified Scheduling Problem 52
5.4 Simplification for Solving the Lagrangian Relaxation 58
5.5 Results . 60

6 Conclusion 62
6.1 Contributions . 62
6.2 Limitations . 64
6.3 Future Work . 64

vi

1

INTRODUCTION

1.1 Background

For decades, Moore’s Law has had impressive predictive power and integrated circuits have

continued to improve at an exponential rate [17]. This has delivered a reliable cadence of

faster and cheaper computers. A key technological driver in this exponential improvement

has been shrinking the size of transistors. The benefits of this approach, however, are be-

ginning to reach physical limitations [22, 17].

While the era of more performant computers through smaller transistors may be coming to

an end, new applications of computing still demandmore powerful devices. In their article

“The End of Moore’s Law: ANew Beginning for Information Technology”, Theis andWong

claim that “the gradual end of Moore’s lawwill open a new era in information technology as

the focus of research and development shifts fromminiaturization of long-established tech-

nologies to the coordinated introduction of new devices, new integration technologies, and

new architectures for computing” [22]. They also go on to identify technologies which they

think can satisfy this demand: of which, field-programmable gate arrays (FPGA) and 3D

microelectronics packaging are particularly relevant for this thesis. With respect to FPGA’s,

Theis andWong state that they can “easily envision future energy-efficient systems consist-

ing of a great many accelerators executing specific operations or algorithms, their interac-

tions orchestrated to perform larger tasks, and turned on and off as needed”. With respect to

3D packaging, they also state that “the realization of monolithically integrated multi-layer

1

2 1. INTRODUCTION

logic and memory would be a revolution, and that revolution could already be brewing”.

As mentioned by Theis and Wong, FPGA’s could be increasingly important for improving

computing power asMoore’s Law comes to an end. In contrast with typical software, which

expresses programs in terms of CPU instructions, FPGA’s allow programs to be expressed as

specialized logic circuits. By expressing programs in this way, applications targeting FPGA’s

can be made much more performant than software implementations. FPGA’s also offer

the benefit of being re-programmable. Unlike with application specific integrated circuits

(ASIC’s), which need to be manufactured for a specific program, with FPGA’s it’s possible

to simply use commercial off-the-shelf hardware.

Due to their performance advantages over software and their flexibility in comparison to

ASIC’s, FPGA’s have already received significant attention. To name just a few applications,

case studies have used FPGA’s to accelerate image processing, encryption, as well as ma-

chine learning algorithms [5, 13, 27]. In the case of a particular feature detection algorithm,

an FPGA implementation offers a 12.89 times speedup compared to a CPU implementation

and a 1.47 times speedup compared to using the GPU [13].

This thesis focuses on one particular feature of FPGA’s: dynamic partial reconfiguration

(DPR). This feature, which is already widely available in modern FPGA’s, allows for a por-

tion of an FPGA to be reconfigured while the rest of the FPGA continues computation.

In general, applications implemented on an FPGA face a trade-off between the available

resources and the application performance and functionality. By using DPR, applications

can achieve more performance or offer more functionality using only the same amount of

FPGA resources.

Currently the time needed for reconfiguration with DPR can be on the order of millisec-

onds, making it a relatively expensive operation and limiting the usefulness of this feature.

One technology which could potentially improve the reconfiguration speed, though, is 3D

packaging. By packaging the FPGA logic along with the memory used for storing configu-

rations, the reconfiguration process could conceivably be made significantly faster. In turn,

this improved reconfiguration speed could allow applications to make more extensive use

of DPR and become much more efficient as a result.

1.2. RESEARCH QUESTIONS 3

1.2 Research Questions

Developing such a novel FPGA using 3D packaging would be a large undertaking. Before

pursuing this technology further, it’s interesting have a tentative answer to just how use-

ful such an improvement in the reconfiguration speed would be. Clearly improving the

reconfiguration speed will offer at least some improvement for some applications. In or-

der to warrant the large amount of work that would be required in hardware development,

though, it should be clear that a large improvement is available as a result.

An important challenge in answering this question is that different applications will likely

benefit to different extents from improved reconfiguration speed. Applications with very

limited functionality or where FPGA’s offer only a modest performance improvement over

software will possibly benefit less, for example. It may also be necessary to adapt how ap-

plications are implemented to fully take advantage of the new reconfiguration capabili-

ties. For instance, when the reconfiguration speed is slow it may be best to limit the use

of DPR: dividing the application into fewer components and reconfiguring between them

infrequently. When the reconfiguration speed is faster, however, a more efficient imple-

mentation might make more use of DPR: dividing the application into many components

and reconfiguring between them frequently.

With this in mind, it’s possible to state the following research questions:

• To what extent can improving reconfiguration speed improve the performance of ap-

plications?

• How should applications be implemented to best take advantage of improved recon-

figuration speed?

1.3 Research Method

Much work has already investigated DPR, but, to the best of my knowledge, existing liter-

ature doesn’t explicitly study the impact of dramatically improving reconfiguration speed.

To begin investigating these research questions, there are two approaches which seem pos-

sible.

The first possible approach is to implement real-world applications and run them on an

4 1. INTRODUCTION

emulated version of the new FPGA architecture. While this approach would give a realistic

evaluation of the new FPGA architecture, it would likely be very challenging to implement.

In addition, it’s not yet clear which applications stand to benefit the most from the new

architecture and how they should be implemented to best take advantage of the improved

reconfiguration speed.

A second possible approach is to model applications as abstract sets of tasks and model the

FPGA only at a high level. Using this high level model, it would then be possible to evaluate

the performance of different abstractworkloads on the FPGAwith different reconfiguration

speeds. This approach of modeling applications of abstract sets of tasks has already been

applied to real-time FPGA scheduling [2].

This thesis investigates the research questions using the second approach. A limitation is

that the results are only as reliable insofar as the high level FPGA model is consistent with

the actual hardware and actual applications. Since this is an early step in investigating the

subject, the synthetic workloads and parameters of the FPGA model haven’t been made to

exactly match real world hardware and applications. As a result, this work falls short of

delivering a precise answer to the research questions such as “a 50% speedup is possible

for real world applications”. Still, the experiments with synthetic workloads reveal some

tendencies that will hopefully be a useful starting point for future work.

1.4 Structure of Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 introduces background information on FPGA’s and DPR which is broadly

relevant to the research questions.

• Chapter 3 defines a model of the FPGA and applications which will be used to inves-

tigate the research questions.

• Chapter 4 uses the approach proposed in the previous chapter to investigate the im-

pact of improving reconfiguration speeds. Some particular effects of improving re-

configuration speeds are identified.

• Chapter 5 attempts to apply theLagrangian relaxation technique to theFPGAschedul-

1.4. STRUCTURE OF THESIS 5

ing problem. The proposed approach proves to be unsuccessful, but the possibility of

applying the Lagrangian relaxation technique may still have some potential.

• Chapter 6 summarizes the results of this thesis and outlines potential approaches for

future research.

2

BACKGROUND

2.1 FPGA’s

To understand the appeal of FPGA’s, it helps to consider them in contrast with two other

platforms: CPU’s and ASIC’s. In software, an application is expressed in terms of the CPU

instruction set and these instructions are then executed by the CPU. This has the advantage

of flexibility: the same CPU can be used to run any application, provided that it’s compiled

for the right instruction set. In contrast, FPGA’s and ASIC’s express applications as logic

circuits.

In the case of ASIC’s, a custom chip is manufactured which encodes the logic circuit. The

need for manufacturing a custom chip has many downsides: it’s difficult to adjust the ap-

plication after manufacturing, it’s only economically feasible at large production volumes,

and the design process is more complex than implementing an application as software. At

the same time, this allows for ASIC’s to be highly efficient [14].

Rather than encoding the logic circuit of an application directly in the physical chip as

ASIC’s do, FPGA’s load the logic circuit specification into amemory. This logic circuit spec-

ification is commonly referred to as a bitstream. Once a bitstream is loaded, the FPGA emu-

lates the specified logic circuit. Since the logic circuit is simply loaded into memory, rather

than physicallymanufactured into the chip, it’s possible for applications targeting FPGA’s to

use commercial off the shelf hardware. This sidesteps many of the complications involved

in producing ASIC’s.

6

2.1. FPGA’S 7

More specifically, FPGA’s consist of thousands of logic cells (LC) which are each used to

emulate a different portion of the logic circuit. A diagram of an LC is shown in figure

2.1. Each logic cell contains a look up table (LUT), a small memory whose value encodes a

particular boolean logic function for the logic cell. The LUT can be seen as corresponding

to a combinatorial circuit, since there is a direct correspondence between the input and

the output. In addition, each logic cell contains a flip flop (FF). The output from the LUT

may either be registered in the FF or not, depending on the logic circuit which is loaded.

The output being registered by a FF or unregistered is controlled by the multiplexer, shown

as the rightmost component in figure 2.1. By including the ability to register outputs, the

FPGA is able to encode sequential circuits, circuits where the output depends not only on

the current input but also on the circuit’s state.

Figure 2.1: FPGA Logic Cell [15]

While logic cells are a fundamental component of FPGA’s, modern FPGA’s contain some

other noteworthy components as well. Many FPGA’s contain digital signal processing (DSP)

slices, which implement some common operations such as multiplication more efficiently

than LC’s [31]. FPGA’s can also include embedded memory. In the Xilinx device family,

this embedded memory is referred to as block RAM (BRAM) [32].

2.1.1 FPGA’s In ComparisonWith Software

As seen in the previous subsection, FPGA’s have a completely different computationalmodel

than the CPU. This difference between the two allows for FPGA’s to often be more efficient,

but at the same time applications targeting FPGA’s face a different set of constraints than

when targeting CPU’s. In particular, FPGA’s are constrained by the number of resources

8 2. BACKGROUND

(LC, BRAM, and DSP) available. The distinctions between the two platforms will be im-

portant in evaluating the research questions of this thesis and are worth considering in

detail. In particular, significantly improving DPR reconfiguration speed has the possibility

of relaxing the resource constraints faced by FPGA’s and possibly making new classes of

applications worth implementing on FPGA’s.

A key difference between the two platforms is that applications implemented on FPGA’s

are generally more efficient than software implementations. One source of inefficiency for

the CPU is that in many cases no instruction computes precisely what’s needed for an ap-

plication. An example of this can be seen in an early encryption scheme DES. DES involves

specific bit permutations which can be implemented very efficiently as a logic circuit, but

are very inefficient when implemented in software [19]. Since there is no specific CPU in-

struction for the required bit permutations, software implementations will need to compose

multiple instructions for what should otherwise be a simple computation. This limitation

of CPU’s can be mitigated by modifying the application. For example, AES, a more mod-

ern encryption scheme than DES, was intentionally designed to allow for a more efficient

software implementation [19]. CPU’s may also add application specific instructions (in-

deed, there’s a specific instruction set for AES on Intel processors [9]). In general, though,

it’s impossible for a CPU instruction set to anticipate all of the computations needed for

applications to be efficient.

The efficiency difference between FPGA’s and CPU’s has additional causes as well. These

are well illustrated in a work by Sirowy and Forin, who ran three programs with various

CPU architectures and FPGA implementations [21]. One of their findings is that instruc-

tion fetching adds a significant performance overhead for the software implementations. In

FPGA’s, nothing analogous to instruction fetching is necessary since the logic circuit imple-

menting the program remains loaded on the FPGA. Similarly, processors can be limited in

terms parallelism. Since FPGA’s and CPU’s are structured so differently, it’s challenging to

make a direct comparison in terms of the amount of parallelism they support. CPU’s may

offer parallelism at the level of having multiple cores or by supporting SIMD.With enough

FPGA resources, however, it’s possible to introduce a large degree of parallelism and apply

optimizations such as pipelining. Sirowy andForin found that a basic software implementa-

tionwas typicallymuch less performant than optimized FPGA implementations. To narrow

this gap, they found that the software implementation could be run on a CPU supporting

2.1. FPGA’S 9

additional parallelism. In particular, their study investigated using a super-scalar CPU.

While applications can be implemented very efficiently on FPGA’s, these implementations

are constrained by the amount of available resources in a way that software is not. When

implementing an application in software, additional features and functionality can be added

at the expense of a larger executable. The CPU only needs to fetch the instructions being

executed at any particular time frommemory, limiting the extent to which executable size is

an important constraint. In FPGA implementations, on the other hand, the full logic circuit

bitstream must be loaded onto the FPGA for the application to execute. 1 Because of this,

the number of LC, DSP and BRAM units on an FPGA becomes an important constraint.

2.1.2 FPGA Resource vs. Performance Trade-Offs

Increasing the importance of the FPGA resources is the fact that there is typically a trade-off

between the number of FPGA resources used in an application’s implementation and the

resulting performance. One particular optimization enabling a trade-off between FPGA

resources and performance is loop unrolling [11]. When a particular computational step

is executed in a loop, this step can be instantiated multiple times in the FPGA, reducing

the required number of loop iterations. This can be seen in figure 2.2a. In this figure the

original loop body, corresponding to the circuit 𝑅, is instantiated twice. Unrolling the loop

by a factor of two then reduces the number of loop iterations required by a factor of two. At

the same time, though, this may result in a reduced clock frequency since the logic in the

loop body increases. The reduced clock speed reduces the performance improvements from

unrolling the loop. This reduced clock speed may be remedied, though, by introducing a

register within the loop body, an optimization known as pipelining [11]. This additional

pipelining step can be seen in figure 2.2b.

The exact FPGA resource and performance trade-off available depends on the details of

the application being implemented. A comprehensive example of this is given by Hom-

sirikamol, Rogawski, and Gaj, who investigated the throughput vs. resource trade-off avail-

able for different cryptographic hash functions [11]. Their results can be seen in figure 2.3.

From the figure, it’s possible to see that some of the hash functions can be optimized for

throughput more effectively than others. In the case of SHA-2 no optimizations were pos-

1If DPR is being used, only the active bitstreams must be loaded.

10 2. BACKGROUND

Figure 2.2: Loop unrolling. a) The loop body R is instantiated twice. b) An additional
register is introduced in the loop body to improve the clock frequency. Reproduced with
permission from [11].

sible other than simply instantiating another SHA-2 instance to compute additional hashes

in parallel. In the case of Groestl, on the other hand, the additional throughput gained

from optimizations is greater than what would be possible in simply instantiating another

instance.

Figure 2.3: Throughput vs FPGA resources of cryptographic hash functions. Reproduced
with permission from [11].

While increasing the FPGA resourcesmay have substantial benefits for performance, it does

come at a cost. FPGA’s containing more resources draw more power compared to smaller

FPGA’s in the same device family [29]. Additionally, larger FPGA’s within a particular de-

vice family will be more expensive.

2.1. FPGA’S 11

2.1.3 Dynamic Partial Reconfiguration

As mentioned in the introduction, this thesis focuses in particular on dynamic partial re-

configuration. This feature allows for portions of the FPGA to reconfigured with a new

bitstream while the rest of the FPGA continues computation. The benefits of this feature

are well summarized in a survey paper from Vipin and Fahmy: “the effective logic density

of the chip can be increased by time-multiplexing hardware resources between mutually

exclusive computations, thereby allowing a larger application to be contained on a smaller

chip.” [25]. In many cases, applications don’t require all functionality or computations to

take place all of the time. By dividing an application into finer grain components and re-

configuring between them, each component has access to a greater number of resources

than it would without DPR. This can allow for performance optimizations as discussed in

section 2.1.2 or simply including the same amount of application functionality on a smaller

device.

Among commercial FPGAvendors, Xilinx andAltera are themain vendors supportingDPR

[25]. The exact terminology used by the two vendors varies, however, the overall process

for DPR is the same. Instead of producing one single bitstream to load onto the FPGA,

applications using DPR are synthesized to also produce partial bitstreams. These partial

bitstreams each encode only a specific module of the overall application which is intended

to be reconfigured. During the runtime of the application, the application can execute a

partial reconfiguration by loading the partial bitstream from memory and forwarding it to

a special reconfiguration port. In Xilinx FPGA’s, this port is referred to as the internal con-

figuration access port (ICAP) [35].

DPR also introduces new constraints which must be taken into account, however. During

the implementation of an application, it’s necessary to decide how to divide the application

into different modules which will be reconfigured at runtime. It’s not possible to deter-

mine at runtime which portions of the application to reconfigure. This is partly because

the partial bitstreams must be synthesized beforehand.

Similarly, the exact number of reconfigurable regions of the FPGA must also be decided

before runtime. In order for these reconfigurable regions to run a particular module, it

must have sufficient resources allocated to it. It’s therefore also necessary to decide which

modules will run onwhich reconfigurable regions. This problem of deciding the number of

12 2. BACKGROUND

reconfigurable regions and how to group modules is known as partitioning [25]. Based on

this specification, the reconfigurable regions are assigned physical locations on the FPGA

during design time in a process known as floorplanning [25].

Since reconfigurable regions are mapped to fixed regions of the FPGA, the partitioning pro-

cess has the potential to introduce inefficient use of FPGA resources. For instance, if a

module requiring 3,000 LC’s and amodule requiring 1,000 LC’s are assigned to the same re-

configurable region, the regionwill need to be allocated at least 3,000 LC’s during floorplan-

ning. When the smaller module is executing, the remaining 2000 LC’s in the reconfigurable

region will be unused.

An additional constraint on DPR is that it’s not possible to reconfigure an arbitrary number

of reconfigurable regions in parallel. The number reconfigurations is limited by the number

of reconfiguration ports, and even the high end Xilinx UltraScale devices only allow one

active ICAP [30]. This limits the application to only reconfigure one reconfigurable region

at a time.

Because the reconfiguration process requires forwarding the partial bitstream to the ICAP,

the time needed to reconfigure a reconfigurable region using DPR is proportional to the

size of the partial bitstream. The size of the partial bitstream is, in turn, proportional to the

number of FPGA resources it uses.

As a reference point for the exact amount of time needed for reconfiguration, it’s interest-

ing to consider the current XilinxVirtex UltraScale+models. These devices contain a 32-bit

ICAP and support a maximum dynamic reconfiguration port clock frequency (𝐹𝐷𝑅𝑃_𝐶𝐿𝐾)

of 250MHz [33, 30]. This gives a theoretical bandwidth of 1 GB/s. There aren’t many papers

reporting typical bitstream sizes, but one paper does report that they obtained bitstreams of

338 KB when synthesizing simple image convolution filters for another Xilinx device [2].

We would then expect reconfiguring these bitstreams to take approximately 0.338 ms on

a high end device, with application modules which require more resources taking longer.

This back of the envelope calculation leaves out some factors which may reduce reconfigu-

ration time 2 and lacks more detailed information about typical bitstream sizes. Neverthe-

less, it’s useful to have at least some reference point for reconfiguration speeds.

2These factors will be addressed in the following the following section.

2.2. IMPROVING RECONFIGURATION SPEED 13

2.2 Improving Reconfiguration Speed

Because of both the potential that DPR offers for better utilizing FPGA resources and the

bottleneck that slow reconfiguration poses, much priorwork has investigated improving the

reconfiguration process. As a result, reconfiguration speeds of FPGA’s have been steadily

improving, and some techniques such bitstream compression have further improved re-

configuration speeds. Nevertheless, the reconfiguration process of current FPGA’s still re-

quires writing the bitstream to a single reconfiguration port. This makes the opportunity of

improving reconfiguration speeds by orders of magnitude with 3D packaging particularly

interesting.

One technology which already offered extremely fast reconfiguration speeds, switching be-

tween configurations in nanoseconds, was the Multi-Context FPGA. These devices were

mainly developed 1990’s and are not commonplace today [25]. To support such fast recon-

figurations, the devices maintained the various configurations on the FPGA itself, rather

than reading them from an external memory. One such device from Trimberger, Carberry,

Johnson and Wong stored eight configurations on on-chip memory and could switch be-

tween configurations in 30ns [24]. Multi-Context FPGA’s tended to require a high amount

of power, though, limiting their usefulness [25]. Much has changed in the field of FPGA’s

since Multi-Context FPGA’s were actively researched. Still, given that the reconfiguration

speeds were so fast, closer examination of the literature on Multi-Context FPGA’s could

reveal some relevant information: for example, how to best structure applications to take

advantage of such fast reconfiguration times.

Another approachwhich has been used to improve reconfiguration speed is bitstream com-

pression. The idea behind this is that compressing the bitstream reduces the amount of

data which must be read from memory. Many techniques have been developed in aca-

demic work, and Xilinx has adopted it’s own support for bitstream compression [25]. In

their survey paper on DPR, Vipin and Fahmy explain that “bitstream compression is useful

when bitstream transfer time from external memory to the FPGA is considerably higher

than the time taken to send the bitstream to configuration memory” [25]. While this ap-

proach makes more efficient use of bandwidth for accessing external memory, the ICAP

still remains a bottleneck as it needs to process the incoming bitstream and load it into

configuration memory. Support for bitstream compression in the ICAP itself could then

14 2. BACKGROUND

make bitstream compression evenmore effective. Xilinx has some support for this with the

“multiple frame write register” [25].

FPGA vendors have also been steadily improving reconfiguration speeds. Figure 2.4 shows

the improvements in theoretical throughput of Xilinx devices. The figure stops in 2015, but

the theoretical throughput of the current Xilinx Virtex UltraScale+ is 1 GB/s 3. With these

improvements, the current FPGA devices still require the bitstream to be passed to a single

ICAP. The premise of this thesis is that configuration memory and FPGA logic could be

combined using 3D packaging and that by doing so, the reconfiguration process may also

be parallelized. Assuming that such technology is feasible, it would offer an even more

substantial improvement than what is shown in figure 2.4.

Figure 2.4: Improvements in Xilinx FPGA reconfiguration throughput. ©2016 IEEE [2].

2.3 3D Packaging

3D packaging, the technology which this thesis supposes could provide dramatic improve-

ment in reconfiguration speed, has seen significant recent progress. This technology is al-

ready used in commercial products, with one of themost advanced examples being the Intel

Lakefield CPU which uses their 3D packaging technology Foveros [16].

A key benefit of 3D packaging is that it can allow for both shorter and a higher number

of interconnects between components. This is illustrated in figure 2.5. Shortening the in-

terconnect length is important since it reduces both the latency and the power usage. In

3This is based on the 32-bit ICAP and 250MHz maximum reconfiguration clock frequency [33, 30].

2.3. 3D PACKAGING 15

particular, “as the parasitic capacitance in microelectronic packages is proportional to the

interconnection length, the total power consumption in 3D packages is also reduced be-

cause of the reduced parasitic capacitance” [16].

Figure 2.5: Comparison of wire lengths in 2D and 3D packages [16]

Formany applications, a primary bottleneck in performance is accessingmemory. The case

of Foveros, shown in figure 2.6, is then particularly interesting since it combines both aCPU

and memory. The 3D packaging has the advantage of increasing the available bandwidth

of accessing memory and reducing the power necessary. There are different varieties of 3D

packaging which exist, and Foveros in particular is an example of Heterogeneous 3D inte-

gration. A benefit of this approach is that it “allows the use of the best available technology

node for each chiplet with different function to maintain maximum performance” [16]. In

other words, the DRAM and the CPU are able to be developed with the most appropriate

respective technology and then packaged together.

Figure 2.6: Foveros 3D packaging [16]

A recent device from Xilinx, the Virtex UltraScale+ high bandwidth memory FPGA, pack-

16 2. BACKGROUND

ages an FPGA along with memory [34]. Whereas an off-chip DDR4 DIMM memory may

allow for a bandwidth of 21.3 GB/s, the high bandwidthmemory FPGA has a bandwidth of

460GB/s and a size of 16GB [34]. Thismemory is intended for use by applications, however,

rather than for improving reconfiguration speeds. Without other changes in the FPGA, the

reconfiguration port remains a bottleneck in the reconfiguration process.

3D packaging technology is progressing rapidly and CPU’s and FPGA’s are already being

packaged together with memory to allow for better memory bandwidth. It’s reasonable

to believe that this same technology could be applied used to improve the reconfiguration

process, potentially quite soon.

2.4 DPR Schedulers

DPR involves running various components of an application over time while respecting the

constraints of the FPGA. This introduces a unique scheduling problem which has already

been addressed by several works. This prior work on scheduling is especially relevant to

the research question at hand, since the schedulers introduce models of applications using

DPR and determine what performance applications are able to obtain.

2.4.1 Deiana et. al Scheduler

One scheduler, which will be used extensively in this thesis, was developed by Deiana,

Rabozzi, Cattaneo, and Santambrogio [7]. This scheduler models the problem as a mixed

integer linear program (MILP). This scheduler is unique in that it has an accurate model

of the FPGA constraints, incorporates some optimizations which can reduce the schedule

makespan, and allows for optimizing not only the schedule makespan, but also the peak

power and energy consumption.

Existing schedulers may be classified as being either heuristic algorithms or exact algo-

rithms: the exact algorithms producing optimal schedules but at the cost of typically being

more time consuming. The scheduler from Deiana et. al, consists of both a heuristic and

exact approach. First, the authors propose anMILP formulation of the scheduling problem

whichmay be solved to obtain optimal schedules. Solving theMILP formulation to optimal-

ity can become time consuming, however. To work around this, the authors also propose

2.4. DPR SCHEDULERS 17

an iterative scheduler which is based on the MILP formulation. The iterative scheduler

requires less time to obtain a schedule, but may produce non-optimal schedules as a result.

In the schedulingmodel, applications aremodeled as a directed acyclic graph of tasks. Each

task must be scheduled exactly once, with edges between tasks representing dependencies.

Each task may have multiple implementations for the scheduler to choose from, includ-

ing software implementations and hardware implementations. Because of its support for

both software and hardware implementations, this scheduler is usable for heterogeneous

architectures containing a processor and FPGA. The task implementations may also have

different runtimes and resource requirements, giving the scheduler flexibility to make per-

formance vs. area trade-offs where necessary.

To avoid unnecessary delays due to reconfigurations, the scheduler allows for two optimiza-

tions: module reuse and configuration prefetching. In module reuse, some tasks may share

common FPGA implementations. If such tasks are scheduled consecutively on the same

FPGA partition and using the same implementation, then no reconfiguration is necessary

between them. In configuration prefetching, a configuration may begin for a task before

the dependencies of the task have completed execution. An example of this can be seen in

figure 2.7. In the figure, task 𝑡2 depends on task 𝑡1. Waiting for task 𝑡1 to complete before

beginning the configuration for task 𝑡2 unnecessarily increases the schedule makespan.

𝑡

FPGA

CPU 𝑡1 𝑡3

reconfiguration 𝑡2

(a) Without prefetching

𝑡

FPGA

CPU 𝑡1 𝑡3

reconfiguration 𝑡2

(b) With prefetching

Figure 2.7: Optimizing execution time with prefetching

18 2. BACKGROUND

2.4.2 FRED Real Time Framework

As a first step in developing FRED, a set of tools for using DPR, Biondi et al. developed a

model of the FPGA for real-time tasks [2]. Thismodel is interesting as it accurately accounts

for reconfiguration time and supports heterogeneous architectures. The authors then use

this model to develop a schedulability analysis for real time task sets using an MILP for-

mulation. While this thesis doesn’t investigate real-time applications, this model is quite

detailed and worth explaining here.

In their model, Biondi et al. account for tasks which are themselves composed of hardware

and software subtasks. The hardware subtasks are always preceded and followed by soft-

ware subtasks, which prepare and retrieve data. The subtasks are characterized by their

worst case execution time. As the model focuses on real-time tasks, tasks also have dead-

lines.

For the reconfiguration process, the FRED model accounts for reconfiguration time de-

pending on the size of the hardware task. As there are limited FPGA resources, hardware

subtasks need towait for space on their partition to become free. Tomanage this process, the

model schedules the hardware tasks with a first-in-first-out queue for each partition. Using

a FIFO policy ensures hardware subtasks eventually progress. Additionally, the reconfigu-

ration interface can only execute one reconfiguration at a time. To manage contention for

the reconfiguration interface, themodel includes a ticket based scheduling policy. This pol-

icy serves the earliest requested reconfiguration first. It can be adapted for both preemptive

and non-preemptive reconfiguration interfaces.

Special consideration needs to be given to how software subtasks retrieve data from a pre-

ceding hardware subtask. If the software subtask and hardware subtask need to be active at

the same time to transfer data, this can cause undesirable delays for other hardware tasks.

The software subtaskmay not be able to execute immediately, and the hardware task would

continue to prevent other hardware tasks from using its resources. Even if this is a rare oc-

currence and doesn’t have a large effect on performance, this additional delay is problem-

atic for real-time systems. To remove the possibility of such delays, themodel proposes that

hardware and software subtasks communicate through a sharedmemory. After writing the

results to memory, the partition of the hardware subtask can be reconfigured.

While the model gives a detailed description of the reconfiguration process and communi-

2.4. DPR SCHEDULERS 19

cation between tasks, it doesn’t propose a way to partition the hardware subtasks. A par-

titioning must already be developed before performing the schedulability analysis. Even if

a task set with a given partitioning is found to not be schedulable, it may still be the case

that it’s schedulable with another partitioning. The model also doesn’t take into account

configuration prefetching. Adding consideration of prefetching could potentially allow for

more task sets to be schedulable.

3

PROPOSED SOLUTION

3.1 Definition of the Model

3.1.1 Relevant Aspects To Model

As outlined in section 1.3, this work studies the impact of reconfiguration speed only at

the level of a modeled workload and FPGA. In order for this approach to yield plausible re-

sults, features of actual FPGA’s and applications should be taken into account to the greatest

extent possible. The following aspects of real world FPGA’s appear to be particularly im-

portant to model:

Resource Constraints of the FPGA The resources available on an FPGA, the number

of LC, DSP, and BRAMunits, constrains howmuch functionality an application can imple-

ment and how performant it may be. To avoid overestimating the performance of a given

application on a particular FPGA, the application’s implementation should not be allowed

to exceed the available resources.

Resource vs. Performance Trade-off As seen in section 2.1.2, applications targeting

the FPGA can typically increase performance at the expense of resource usage. The exact

trade-off available varies by application. A key benefit of DPR is that different modules

in a program may be time-multiplexed, giving the modules access to additional resources

and allowing them to be implemented in a more performant way. To accurately model the

20

3.1. DEFINITION OF THEMODEL 21

potential benefits of improving reconfiguration speed, the model should then account for

the ability to trade-off performance and FPGA resources.

Reconfiguration Time In current FPGA’s, the time needed to reconfigure an FPGA re-

gion is proportional to the size of the reconfigurable region. This constraint potentially

limits the benefits of DPR, though. While DPR will allow application modules to be imple-

mented with more resources and therefore be more efficient, these larger implementations

will require a longer time to be reconfigured.

Partitioning of the FPGA As described in section 2.1.3, the number of reconfigurable

regions and the amount of FPGA resources to allocate to them must be decided at design

time. This inability to map application modules to any arbitrary region of the FPGA at

runtime can result in FPGA resources remaining idle at times. It’s not immediately clear

whether improving reconfiguration speedwould improve or worsen this phenomenon, and

it may be the case that the effect of this constraint tends to be small. Nevertheless, the need

for partitioning the FPGA into reconfigurable regions is interesting to include in the model

to remain as accurate as possible.

Ability toRunAsSoftware It could potentially be the case that applicationswhich stand

to benefit from improved reconfiguration speed are currently run as software rather than

targeting an FPGA. For instance, such applications might contain too much functionality

to easily fit on an FPGA and the overhead of using DPR could be too high at current re-

configuration speeds. To avoid giving a pessimistic estimate of the current performance of

these applications, which would overestimate the usefulness of improving the reconfigura-

tion speed, the model should take into account the ability of applications to run either as

software or on an FPGA. Some real world platforms, such as the Xilinx Zynq, incorporate

both a CPU and FPGA, allowing portions of an application to be implemented as software

and other portions to be implemented for the FPGA. Incorporating both a CPU and FPGA

into the model will allow for evaluating whether applications may transition from software

implementations to FPGA implementations as reconfiguration speed is improved.

22 3. PROPOSED SOLUTION

3.1.2 Model Definition

With the above considerations in mind, it’s possible to define a model of the applications

and the hardwarewhich theywill be run on. The applications, whichwill also be referred to

as workloads, consist of a set of tasks which must be run. Each task will have multiple pos-

sible implementations which may be used to run it. These implementations are either soft-

ware implementations or FPGA implementations. The only parameter used in describing

software implementations is their runtime. The FPGA implementations are characterized

by their runtime as well as the amount of FPGA resources which they require.

Each task must be run exactly once, meaning tasks are not recurring. In addition, the tasks

are considered to be non-preemptive. While the scheduler of Deiana et. al. considered the

possibility of implementations supporting multiple tasks, this work will assume that each

implementation can only be used to execute a single task. This assumption removes the

possibility of the “implementation reuse” optimization accounted for by Deiana et. al. It

would certainly be interesting to consider the case of recurring tasks or othermore complex

types of workloads. For this work, however, the modeled workloads are kept quite simple.

The platform used for running workloads consists of a CPU as well as an FPGA. The CPU is

parameterized by the number of CPU cores, and it’s assumed that all software implementa-

tions will require only one CPU core to run and that the CPU cores are homogeneous. The

FPGA is parameterized the amount of LC, DSP, and BRAM units available.

For running a workload, the FPGA will be partitioned and each partition will be allocated

an amount of resources. Each partitionmay be used to run one task at a time, with reconfig-

urations being required between tasks on a given partition. The total amount of resources

occupied by the partitions must be within the limits of the FPGA, and task implementa-

tions may only be run on partitions with sufficient resources. This is a stronger condition

than simply requiring the total FPGA resource limits to be respected at any given point in

time and is more consistent with the actual functioning of FPGA’s.

Initially, we assume that only one reconfigurationmay be run by the FPGA at once, but this

condition will be relaxed later in section 3.3. It is also assumed that the first task implemen-

tation run on a given FPGA partition also requires a configuration. This assumption is in

contrast with themodel of Deiana et al, which assumes that the first task on a partition does

not require a configuration. When the FPGA first boots up, no configuration is loaded and

3.1. DEFINITION OF THEMODEL 23

some configuration will therefore be necessary, so the assumption seems reasonable. In the

worst case, the impact on performance will be limited to a constant factor: the time needed

to configure the entire FPGA once. Assuming that initial implementations on the FPGA

also require a reconfiguration becomes somewhat useful in section 3.3, since it removes the

need for special handling of the initial implementations.

There aremany possible benefits that could result from improved reconfiguration speed. In

terms of performance, a given workload on a given FPGAmay be executed within a shorter

amount of time. In terms of efficiency, a smaller FPGA could potentially be used to execute

a given workload within a fixed amount of time. Similarly, the size of the FPGA and the

amount of execution time could be held constant, with the objective being to maximize the

number of tasks executed.

This study in particular will focus on performance. For a fixed platform and workload,

it will investigate how reconfiguration speed influences the makespan, the time needed

to execute all tasks. This problem of determining the makespan for a given platform and

workload is essentially a scheduling problem.

The table 3.1 introduces the actual parameters used to characterize the target platform and

workload. The parameter names are chosen to remain mostly consistent with the model of

Deiana et al. discussed in section 2.4.1.

Target Architecture
𝑃𝑆𝑊 Set of all available CPU cores
𝑃𝐻𝑊 Set of FPGA reconfigurable regions (partitions)
𝑃 Set of all processing units: 𝑃𝑆𝑊 ∪ 𝑃𝐻𝑊
𝑅 Set of different FPGA resources (LC, DSP, BRAM)

𝑚𝑎𝑥𝑅𝑒𝑠𝑟 Amount of resource 𝑟 ∈ 𝑅 available on the FPGA
𝑠𝑟 Amount of time needed to reconfigure one unit of resource 𝑟 ∈ 𝑅

Workload
𝑇 Set of tasks
𝐼𝑆𝑊 Set of software implementations of tasks
𝐼𝐻𝑊 Set of FPGA implementations of tasks
𝐼 Set of all implementations, 𝐼𝑆𝑊 ∪ 𝐼𝐻𝑊

𝑇𝑃𝐼 Set of compatible tasks, implementations, and processing units: 𝑇𝑃𝐼 ⊆ 𝑇 × 𝑃 × 𝐼
𝑙𝑖 Amount of time needed to complete running implementation 𝑖 ∈ 𝐼
𝑜𝑐𝑖,𝑟 Amount of resource 𝑟 ∈ 𝑅 needed by implementation 𝑖 ∈ 𝐼𝐻𝑊

Table 3.1: Model parameters

While most of the parameters are straightforward, 𝑃𝐻𝑊 warrants some further discussion.

The resources allocated to all FPGA partitions should be within the limits of the available

24 3. PROPOSED SOLUTION

FPGA resources. Aside from that, however, there is no limit on the number of partitions

that there may be. Setting 𝑃𝐻𝑊 such that |𝑃𝐻𝑊| = |𝑇| is sufficient, since it ensures that

every task may potentially be run in parallel by the FPGA. Since a large number of FPGA

partitions maymake themodel more complicated, though, it maymake sense to try to limit

the size of 𝑃𝐻𝑊 further. A solution from Deiana is to solve a variant of the bin packing

problem to determine the maximum number of tasks which may be run in parallel while

remainingwithin the FPGA resource limits [6]. While this requires additional computation,

it makes later use of the model simpler. This bin packing approach is used in this work.

It’s also worth clarifying the parameter 𝑠𝑟, the amount of time needed to reconfigure one

unit of resource. This work often discuses reconfiguration speed, however, the model it-

self is parameterized by the inverse of the reconfiguration speed. This may lead to some

confusion in terminology, especially between “reconfiguration time” referring to the total

time spent by the FPGA performing reconfiguration and referring to the reconfiguration

time per unit of bitstream. One advantage, though, is that representing the extreme case of

𝑠𝑟 = 0 is arguably easier than considering the limit of reconfiguration speed approaching

infinity.

3.2 Applying the Deiana et. al Scheduler

The model detailed above is essentially a more simple version of the scheduling problem

considered by Deiana et. al (see Section 2.4.1). The only inconsistency with their scheduler

is that it doesn’t require configurations for the first task executed on each FPGA partition.

This inconsistency can be patched easily, though, by adding an additional constraint to

their MILP formulation. With the models consistent, the Deiana et. al scheduler can then

be applied to the model considered here.

In particular, their formulation includes a binary variable 𝑐𝑓𝑡𝑡,𝑐 which is set to 1 if task 𝑡 is

the first task scheduled on the FPGA partition 𝑐. Their model also defines a binary variable

𝑟𝑡𝑡𝑟𝑡,𝑡 which is set to 1 if task 𝑡 requires a reconfiguration 𝑟𝑡. Finally, the set 𝑅𝑇 specifies

all of the reconfigurations which may be necessary. A reconfiguration can then be required

for the first task on each partition with the constraint: 1

1There are minor additional details which are worth mentioning to be precise. An additional reconfigu-
ration should be added to 𝑅𝑇 so that |𝑅𝑇| = |𝑇|. Also, the notation used here is slightly inconsistent with
Deiana et al. as they use 𝐶ℎ instead of 𝑃𝐻𝑊.

3.2. APPLYING THE DEIANA ET. AL SCHEDULER 25

∑
𝑟𝑡∈𝑅𝑇

𝑟𝑡𝑡𝑟𝑡,𝑡 ≥ ∑
𝑐∈𝑃𝐻𝑊

𝑐𝑓𝑡𝑡,𝑐 ∀𝑡 ∈ 𝑇 (3.1)

To determine the makespan of a given workload run on a given platform, a possible ap-

proach is to then simply run the scheduler from Deiana et al. In particular, their work

proposes two schedulers: anMILP formulation of the problem, which produces an optimal

schedule for the given workload and platform, and an iterative scheduler, which will gen-

erally not produce an optimal schedule, but which is much faster than solving the MILP

formulation.

Since the ultimate goal of this research is to draw conclusions based on the results of the

model, the selection between applying the MILP and iterative schedulers has important

implications. In using the MILP formulation, it will be possible to have more confidence

when drawing conclusions from results of the model. As the schedules that the MILP for-

mulation produceswill be optimal, any differences resulting from changing reconfiguration

speed will likely indicate some actual phenomenon. In using the iterative scheduler, on the

other hand, there is the risk that the scheduling algorithm produces better results at slow

reconfiguration speeds and worse results at faster reconfiguration speeds (or vice versa).

Regardless of the results of iterative scheduler, it will be difficult to tell if any patterns are

actual effects of changing the reconfiguration speed, or simply side-effects of this particular

scheduling algorithm.

There is no particular aspect of the iterative scheduler which gives reason to believe that

it has any behaviour like what is mentioned above. This is simply a possibility that should

be taken into account since its resulting schedules are not generally optimal. In addition,

any results from the model about the impact of reconfiguration speed should be held with

some skepticism anyway, since the modeled workloads possibly differ significantly from

real world workloads. Still, based on this analysis the MILP scheduler is preferable.

Solving the MILP formulation to optimality proved to be very computationally expensive,

though, making this approach infeasible. A full discussion of the time needed to solve the

MILP formulation is given in Section 4.3. In summary, solving the MILP formulation with

Gurobi, a powerful commercial solver, took 9 hours for a workload of 6 tasks when run on

a modest laptop computer.

The paper from Deiana et. al doesn’t report the absolute amount of time needed to solve

26 3. PROPOSED SOLUTION

the MILP formulation, but they do report that it is generally long. One contributing factor

which they report is that the number of variables in the formulation grows quadratically

with the number of tasks. In particular, for all pairs of tasks which could possibly be run at

the same time, binary variables are added to encodewhich task occurs before the other. This

requires a quadratic number of variables and may make the formulation more challenging

to solve.

The large amount of time needed to solve the MILP formulation to optimality makes it less

suitable for investigating the research questions of this thesis. In studying the research ques-

tion, it would be particularly interesting to consider workloads with many tasks. It could

potentially be the case, for example, that workloads composed of more tasks experience a

more significant performance improvement. To detect patterns such as this, it’s useful to be

able to study workloads withmore tasks than the amount which can be used with theMILP

formulation. The computer used for testing the MILP formulation is admittedly quite old,

and it may be possible to obtain some results by using amore powerful server. Nevertheless,

it’s worthwhile to evaluate other possible techniques.

3.3 Determining Schedule Lower Bounds

To be able to draw stronger conclusions about the possible performance improvement from

improved reconfiguration speed, thiswork introduces amethod for calculating lower bounds

on the schedule makespan. The iterative scheduling algorithm described in the previous

section already gives a way of determining an upper bound on the schedule makespan. By

having both upper and lower bounds on the schedule makespan, it will be possible to draw

stronger conclusions on the impact of improving reconfiguration speed. In particular, the

lower boundwill reveal any bias causing the iterative scheduler to perform significantly bet-

ter at faster or slower reconfiguration speeds. Calculating the upper and lower bounds on

the schedule makespan will prove to be much faster than calculating the optimal schedule,

making it possible to analyze larger workloads.

3.3. DETERMINING SCHEDULE LOWER BOUNDS 27

3.3.1 Simplifying The Scheduling Problem

A key source of complexity in the MILP formulation of Deiana et. al is that the start and

end times of tasks are explicitly modeled. This is necessary since their model takes into

account the following features:

1. Tasks may be dependent on each other. If one task depends on another, it may not

begin until the other has finished.

2. Some tasks may have FPGA implementations in common. By running consecutively

on the same FPGA partition and with the same implementation, these tasks may

avoid the need for a reconfiguration between them.

3. Only one reconfiguration may take place on the FPGA at a time.

The first two considerations are already excluded from the model proposed in section 3.1.

By removing the third constraint as well, allowing multiple reconfigurations to take place

at a time, the MILP formulation can simplified. It is no longer necessary to model the start

and end times of the tasks, and it suffices to track only which task is executed with which

implementation and with which FPGA partition or CPU core.

TheDeiana et. al formulation also has an accurate, but as a resultmore complicated, formu-

lation of reconfigurations, which can be simplified. In particular, their MILP formulation

models reconfigurations as special tasks and enforces a correspondence between normal

tasks and reconfiguration tasks. Including these reconfiguration tasks allows for modeling

the fact that the reconfiguration time depends on the amount of resources allocated to a

particular FPGA partition, as opposed to the amount of resources required by the imple-

mentation being configured. By making the reconfiguration time only depend on the re-

sources required for the implementation being configured, it’s possible to remove the need

for reconfiguration tasks in the MILP model.

3.3.2 MILP Formulation

With these simplifications, it’s possible tomodel the scheduling problemusing a straightfor-

ward MILP formulation. In addition to the parameters described in section 3.1, it’s neces-

sary to introduce some variables. The binary variable 𝑥𝑡,𝑝,𝑖 ∈ {0, 1} indicates if the schedule

28 3. PROPOSED SOLUTION

processes task 𝑡 ∈ 𝑇 on region 𝑝 ∈ 𝑃 with implementation 𝑖 ∈ 𝐼: 1 indicating that the

task-region-implementation combination is scheduled and 0 that it is not. The variable is

defined for all (𝑡, 𝑝, 𝑖) ∈ 𝑇𝑃𝐼. The variable 𝑢𝑟,𝑝 represents the amount of FPGA resources

of type 𝑟 ∈ 𝑅 allocated to FPGA region 𝑝 ∈ 𝑃𝐻𝑊 in the schedule. Finally, a variable 𝑧 is also

introduced to represent the makespan of the schedule. The simplified scheduling problem

can then be formulated as the following MILP:

minimize 𝑧 (3.2a)

subject to

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑡=𝑡′

𝑥𝑡,𝑝,𝑖 = 1 ∀𝑡′ ∈ 𝑇, (3.2b)

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′

(𝑙𝑖 + ∑
𝑟∈𝑅

𝑠𝑟 ⋅ 𝑜𝑐𝑖,𝑟)𝑥𝑡,𝑝,𝑖 ≤ 𝑧 ∀𝑝′ ∈ 𝑃𝐻𝑊, (3.2c)

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′

𝑙𝑖 ⋅ 𝑥𝑡𝑝𝑖 ≤ 𝑧 ∀𝑝′ ∈ 𝑃𝑆𝑊, (3.2d)

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′,𝑡=𝑡′

𝑜𝑐𝑖,𝑟 ⋅ 𝑥𝑡,𝑝,𝑖 ≤ 𝑢𝑟,𝑝 ∀𝑝′ ∈ 𝑃𝐻𝑊, 𝑡′ ∈ 𝑇, 𝑟′ ∈ 𝑅, (3.2e)

∑
𝑝∈𝑃𝐻𝑊

𝑢𝑟,𝑝 ≤ 𝑚𝑎𝑥𝑅𝑒𝑠𝑟 ∀𝑟′ ∈ 𝑅, (3.2f)

𝑥𝑡,𝑝,𝑖 ∈ {0, 1} ∀(𝑡, 𝑝, 𝑖) ∈ 𝑇𝑃𝐼 (3.2g)

The constraint 3.2b ensures that each task is processed using exactly one implementation on

exactly one component. The constraints 3.2c and 3.2d ensure that the makespan 𝑧 has the

correct semantics. For each component 𝑝 ∈ 𝑃, the makespan 𝑧 should be long enough for

the component to process all tasks which are assigned to it. On FPGA components, treated

with constraint 3.2c, the additional term∑𝑟∈𝑅 𝑠𝑟 ⋅𝑜𝑐𝑖,𝑟 is added tomodel the reconfiguration

time needed.

In constraint 3.2c, it’s possible to see how making reconfiguration time depend directly

on the implementation size helps simplify the model. If the reconfiguration time were to

instead depend on the resources allocated to the partition, 𝑢𝑟,𝑝, the constraint could be

expressed as shown in equation 3.3. This constraint is not linear, however, since variables

𝑢𝑟,𝑝 and 𝑥𝑡,𝑝,𝑖 are multiplied. To keep the formulation linear, it would likely be necessary

to introduce special reconfiguration tasks in a similar way to the Deiana et al formulation.

3.3. DETERMINING SCHEDULE LOWER BOUNDS 29

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′

(𝑙𝑖 + ∑
𝑟∈𝑅

𝑠𝑟 ⋅ 𝑢𝑟,𝑝)𝑥𝑡,𝑝,𝑖 ∀𝑝′ ∈ 𝑃𝐻𝑊 (3.3)

The constraint 3.2e ensures the correct semantics for 𝑢𝑟,𝑝, the resources used by FPGA

component 𝑝. Each FPGA component must have enough resources allocated to it to run

the tasks which are assigned to it. An alternative way of formulating this this would be

adding a constraint 𝑜𝑐𝑖,𝑟𝑥𝑡,𝑝,𝑖 ≤ 𝑢𝑟,𝑝 for every possible combination of FPGA component

𝑝 ∈ 𝑃𝐻𝑊, task 𝑡 ∈ 𝑇, resource type 𝑟 ∈ 𝑅, and implementation 𝑖 ∈ 𝐼𝑡.

Finally, constraint 3.2f ensures that the resources allocated to the FPGA components don’t

exceed the total resources of the FPGA.

3.3.3 Verifying That A Lower Bound Is Provided

A well known result in integer linear programming is that a relaxation can be used to find

dual bounds. In the case of a minimization problem, such as the scheduling problem at

hand, a dual bound is a lower bound. 2 For clarity, definition 1 restates the definition of a

relaxation. The definition is taken from Definition 2.1 of Wolsey’s book Integer Program-

ming [28], with the definition adjusted for the minimization case.

Definition 1. A problem (RP) 𝑧𝑅 = min{𝑓(𝑥) ∶ 𝑥 ∈ 𝑇 ⊆ 𝑅𝑛} is a relaxation of (IP) 𝑧 =

min{𝑐(𝑥) ∶ 𝑥 ∈ 𝑋 ⊆ 𝑅𝑛} if

1. 𝑋 ⊆ 𝑇

2. 𝑓(𝑥) ≤ 𝑐(𝑥) for all 𝑥 ∈ 𝑋

To show that the simplifiedMILP formulation given in equation 3.2 provides a lower bound

on the schedule makespan in the original model, it suffices to show that the simplified

model is a relaxation. Instead of a full, rigorous proof of this, a general outline will be given

of why this is the case. As a starting point, the differences between the twomodels are quite

small:

1. The original model only allows for a single FPGA partition to be reconfigured at a

time, whereas the simplified model allows for an arbitrary number of partitions to be

reconfigured at a time.
2When the problem is a maximization problem, the dual bound is a upper bound.

30 3. PROPOSED SOLUTION

2. In the original model, the reconfiguration time depends on the size of the partition.

In the simplified model, the reconfiguration time depends on the size of the imple-

mentation.

The first adjustment to the original model strictly increases the solution space of possible

schedules, since it simply removes the constraint that there is only one reconfiguration at a

time. This is therefore consistent with the first requirement of definition 1.

With respect to the second adjustment: the amount of resources used by an FPGA imple-

mentation is always less than or equal to the resources allocated to the FPGA partition it is

assigned. As a result, the reconfiguration time needed for a task in the original model is al-

ways greater than or equal to the reconfiguration time needed for the task in the simplified

model. This adjustment again increases the solution space of possible schedules, since the

simplified model allows for schedules with less reconfiguration time allocated.

3.3.4 Remarks on the Simplified MILP Formulation

While it’s not realistic to assume the computational complexity of the MILP formulation

based on the number of variables alone, it’s promising that the simplifiedMILP formulation

doesn’t have many variables. In particular, there are only |𝑇𝑃𝐼| + |𝑃𝐻𝑊| + 1 variables.

Unlike the originalMILP formulation fromDeiana et. al, however, the simplifiedMILP for-

mulation isn’t immediately useful for scheduling real-world applications. This is because

the model makes unrealistic assumptions about the FPGA behaviour. Still, the main moti-

vation in creating this model is that it provides lower bounds on the schedule makespan.

The closer the lower bound provided by the simplified MILP formulation is to the actual

optimal schedule makespan the better. This gap between the makespan in the simplified

model and the original model can be made arbitrarily large, however. A simple way to see

this is to consider a set of tasks which each consist of exactly one FPGA implementation.

Even if the FPGA has enough resources to support all tasks executing in parallel, the limita-

tion that one reconfiguration may run at a time will increase the makespan in the original

model. In the simplified model, though, the tasks may all execute in parallel as long as

the FPGA has sufficient resources. Adding additional tasks in the same way continues to

increase the gap in makespan between the two schedules. This can be seen in figure 3.1.

3.4. GENERATION OFWORKLOADS ANDMODEL PARAMETERS 31

𝑡
P3

P2

P1 reconfiguration 𝑡1

reconfiguration 𝑡2

reconfiguration 𝑡3

(a) Schedule in original model

𝑡
P3

P2

P1 reconfiguration 𝑡1

reconfiguration 𝑡2

reconfiguration 𝑡3

(b) Schedule in simplified model

Figure 3.1: Gap in makespan between simplified and original model

3.4 Generation of Workloads andModel Parameters

To evaluate the potential impact of reconfiguration speeds, it is necessary to generate sample

workloads and specify the FPGA and CPU parameters. In generating these values, there

was a trade-off available between remaining simple and corresponding with actual real-

world applications and FPGA’s.

For the set of FPGA resources 𝑅: LC, DSP and BRAM resources were considered. In ana-

lyzing the schedules, though, it’s useful to be able to have a full ordering on the resources

needed by an implementation 𝑖 ∈ 𝐼. If one implementation uses more LC resources than

another implementation but requires fewer BRAM resources, it’s more challenging to state

which is larger overall. To make the analysis simpler, the model parameters regarding re-

sources -𝑚𝑎𝑥𝑅𝑒𝑠𝑟, 𝑠𝑟, 𝑜𝑐𝑖,𝑟 - are kept identical across the different resources. For instance,

in all analysis in this work, 𝑠𝐿𝐶 = 𝑠𝐷𝑆𝑃 = 𝑠𝐵𝑅𝐴𝑀. An alternative solutionwould have simply

been to only consider one resource in the model.

The FPGA considered in the analysis is given 10,000 units of each resource: 𝑚𝑎𝑥𝑅𝑒𝑠𝑟 =

10, 000 for 𝑟 ∈ {𝐿𝐶,𝐷𝑆𝑃, 𝐵𝑅𝐴𝑀}. In generating the applications, each task is given a soft-

ware implementation with a random execution time 𝑙𝑖 between 5,000 and 10,000 units of

time. Similarly, each task is given FPGA implementations. The exact number of FPGA

32 3. PROPOSED SOLUTION

implementations is randomly chosen and is between 2 and 10. The FPGA implementa-

tions were given increasingly higher resource requirements and increasingly lower execu-

tion times. Every task is also given an FPGA implementation requiring fewer than 3,000

resource units. This mimics, at least crudely, the resource vs performance trade-off dis-

cussed in section 2.1.2. Pseudo-code for the generation of implementations for each task is

given in algorithm 1.

Algorithm 1 Generation of implementations
1: function GenerateImplementationsForTask
2: implementations← []
3: swImplTime← Random(5000,10000)
4: implementations.append(SwImpl(swImplTime))
5: numFpgaImpls← Random(2,10)
6: fpgaImplSize← Random(1, 3000)
7: fpgaImplTime← Random(500, swImplTime)
8: implementations.append(FpgaImpl(fpgaImplSize, fpgaImplTime))
9: for all 1..numFpgaImpls do
10: fpgaImplSize← Random(fpgaImplSize, maxFpgaResources)
11: fpgaImplTime← Random(500, fpgaImplTime)
12: implementations.append(FpgaImpl(fpgaImplSize, fpgaImplTime))
13: end for
14: return implementations
15: end function

4

RESULTS

4.1 Implementation and Setup

In order to evaluation the approach proposed in chapter 3, an implementation was made

in Python. The source code is publicly available and hosted at MYYUX���LNYQFG.HTm�

HQFmUQJ�KULF�XHMJdZQJW. The MILP formulations are implemented using the Python

library Pyomo [4, 10]. Gurobi 7.5.2 [1] is used as an underlying MILP solver.

In particular, the implementation contains the optimal MILP based scheduler and the iter-

ative scheduler of Deiana et al, along with the simplified MILP based scheduler described

in section 3.3. The implementation of the schedulers using Pyomo was relatively straight-

forward and doesn’t warrantmuch further explanation here. To improve reproducibility, all

data which was used in producing the results of this chapter is also included in the repos-

itory. Further explanation of which which data corresponds to which figure is included in

the repository’s file README.md.

4.2 Example Schedules

In order to illustrate how the model introduced in the previous chapter works, this section

includes schedules produced for a single particular workload. In particular, figures 4.1, 4.2,

and 4.3 depict the optimal schedule of the same workload on the same FPGA, when sched-

uled with increasingly fast reconfiguration speeds. The horizontal axis represents time, and

33

https://gitlab.com/clample/fpga-scheduler
https://gitlab.com/clample/fpga-scheduler

34 4. RESULTS

simple boxes are included to indicate a task being run on a particular partition at a partic-

ular time. Reconfigurations are indicated using crossed lines. For tasks scheduled with an

FPGA implementation, the number of LC’s used by the implementation is indicated below

the task name. The optimal schedules were generated by solving the Deiana et. al MILP

formulation.

Figure 4.1 shows a schedule at a slow reconfiguration speed. In the schedule, it’s interesting

to note that all tasks except for one are executed by the CPU. The reconfiguration speed is

exceptionally slow in comparison to the time needed to execute the tasks on the CPU. Even

though there exist performant FPGA implementations, the overhead needed to configure

them is too large.

0 5000 10000 15000 20000 25000 30000

SW
Processor 0

FPGA
Partition 3

𝑡0𝑡1 𝑡2𝑡3

𝑡4
161

Figure 4.1: Optimal schedule with reconfiguration time per resource unit 𝑠𝑟 = 30

In figure 4.2, the reconfiguration speed is faster than in the previous example. As a result,

all tasks except for one are executed on the FPGA usingmore performant implementations.

By better utilizing the FPGA, the makespan improves by a factor of two in comparison with

the previous example. Still, the FPGA implementations which are used require relatively

few resources. This is possibly due to the large overhead of reconfiguration.

In figure 4.2, it can also be seen that tasks don’t necessarily begin execution at the earliest

time possible. Task 𝑡4, for instance, could be executed at an earlier time since there are no

4.2. EXAMPLE SCHEDULES 35

other tasks executed on that partition and it is configured immediately. The reason for this

slightly unintuitive behaviour is that theMILP formulation is onlyminimizing the schedule

makespan. There is no constraint requiring that tasks begin as early as possible, so theMILP

solver may produce schedules where tasks start later than expected. Still, the MILP solver

will not begin tasks later than possible in cases where this actually increases the schedule

makespan. As the research questions focus primarily on the schedule makespan, this effect

isn’t really a concern.

Another interesting feature of figure 4.2 is that the FPGA partitions and CPU are mainly

idle. When viewing FPGA partition 4, it’s tempting to think that the schedule makespan

could be reduced by configuring task 𝑡2 earlier. The critical path in this schedule, however,

involves the FPGA reconfigurations, which are constrained to allow only one reconfigura-

tion at a time. If a scheduler were to be produced for the same workload but using the sim-

plified schedulingmodel, which allows for parallel reconfigurations, the resulting schedule

makespan would be shorter.

0 2000 4000 6000 8000 10000 12000 14000

SW
Processor 0

FPGA
Partition 4

FPGA
Partition 3

FPGA
Partition 2

FPGA
Partition 0

𝑡3

𝑡2
1515

𝑡1
290

𝑡4
161

𝑡0
205

Figure 4.2: Optimal schedule with reconfiguration time per resource unit 𝑠𝑟 = 2

In figure 4.3, the reconfiguration speed is again improved by a large factor. With the over-

head of reconfiguration being very low, all tasks are executed on a single partition using

their most performant implementations. The schedule makespan is reduced in compari-

36 4. RESULTS

son with figure 4.2 by over a factor of three.

0 500 1000 1500 2000 2500 3000 3500 4000

FPGA
Partition 1

𝑡0
9585

𝑡1
9633

𝑡2
9876

𝑡3
10000

𝑡4
9946

Figure 4.3: Optimal schedule with reconfiguration time per resource unit 𝑠𝑟 = 0.01

The overall improvement of the makespan with respect to the reconfiguration speed is

shown for this same example workload in figure 4.4. In the figure, it can be seen that the

rate of improvement in makespan isn’t consistent. At some points, the schedule reaches

a plateau. At other points, the schedule makespan improves significantly with respect to

improvements in reconfiguration speed.

4.3. SCHEDULER EVALUATION 37

0 2 4 6 8 10
Reconfiguration time per resource unit, 𝑠𝑟

2500

5000

7500

10000

12500

15000

17500

20000

Sc
he
du
le
m
ak
es
pa
n

Figure 4.4: Optimal schedule makespan in comparison with reconfiguration speed

4.3 Scheduler Evaluation

Chapter 3 introduced a simplified MILP based scheduler with the motivation being that it

would be faster than solving the original MILP formulation to optimality. The simplified

MILP based scheduler can then be used to obtain lower bounds schedule makespan while

the iterative scheduler may be used to obtain upper bounds. To evaluate the effectiveness

of this approach, this section compares results of the original MILP formulation with the

iterative scheduler and simplified MILP based scheduler.

This evaluation was performed by running all three schedulers on 10 randomly generated

workloads, generated as described in section 3.4, and averaging the results. The implemen-

tation was run on a basic laptop computer. To be precise, it was run on Linux with an Intel

i5-2520M CPU and 16GB RAM. The iterative scheduler can be made to produce more opti-

mal schedules at the cost of more computation time by adjusting a parameter 𝑘, the number

of tasks which are added to the scheduler with each iteration. The implementation used

38 4. RESULTS

throughout this chapter has a value of 𝑘 = 2.

Table 4.1 lists the average time needed to produce a schedule. To be clear, this isn’t the

makespan of the schedule, but rather the time needed for the algorithm to generate the

schedule. The amount of time needed to solve the full MILP formulation to optimality in-

creases quite quickly. The iterative scheduler and the simplifiedMILP formulation produce

results within a short amount of time, however. Among the samples with 6 tasks, the full

MILP formulation completedwithin 471s for the first sample but took 9 hours to reach a 10%

optimality gap for the second sample. Due to the long runtime, the process was terminated.

The hardware used in generating table 4.1 is not particularly powerful, which contributes

to the longer solve times, and one cutting from the full MILP formulation wasn’t used. Nev-

ertheless, the long solve times are generally consistent with what was reported in the paper

of Deiana et. al.

Number of tasks Full MILP formulation Simplified MILP formulation Iterative scheduler
1 0.39 0.39 0.09
2 0.48 0.39 0.20
3 1.24 0.40 0.55
4 5.49 0.41 0.75
5 56.17 0.43 1.72
6 N/A 0.43 2.28

Table 4.1: Average time needed to produce a schedule, measured in seconds

For investigating the research question of this thesis, it’s important that the iterative sched-

uler and simplified MILP formulation produce schedules which are relatively close to opti-

mal. To evaluate the accuracy of these two schedulers it’s possible to use the mean absolute

percentage error (MAPE), given in equation 4.1. In this equation 𝐴𝑤 corresponds to the

optimal schedule makespan for workload 𝑤, as determined by the full MILP formulation,

and 𝐹𝑤 corresponds to the makespan as determined by the iterative scheduler or simplified

MILP formulation. The goal of applying MAPE is simply to evaluate how close the two

schedulers are to being optimal. It should be stressed that MAPE should not be used to try

and make a direct comparison between the two schedulers and find which is “better”. Not

only are they solving different problems, one computing an upper bound and the other a

lower bound, but also MAPE is biased to report better results for the lower bound produced

by the simplified MILP formulation [23].

4.4. OVERALL IMPACT OF RECONFIGURATION SPEED 39

𝑀𝐴𝑃𝐸 = 100
𝑛

𝑛
∑
𝑤=0

|||
𝐴𝑤 − 𝐹𝑤
𝐴𝑤

||| (4.1)

The resulting MAPE values for the two schedulers on the same workloads are included in

table 4.2. As can be seen in figure 4.5, the difference in makespan between the simplified

MILP formulation and iterative scheduler depends on the reconfiguration speed. The re-

sults given in table 4.2 are based on a reconfiguration time per unit of FPGA resources of

𝑠𝑟 = 2.

Unfortunately, the inaccuracy of both the simplified MILP formulation and the iterative

scheduler appears to increase with the number of tasks. The two schedulers also diverge

significantly from the actual optimal schedule. This will limit the usefulness of the ap-

proach. The iterative scheduler can be made more accurate at the cost of computation time

by adjusting its parameter 𝑘, but such a trade-off isn’t possible with the simplified MILP

formulation.

Number of tasks Simplified MILP formulation Iterative scheduler
1 0.0% 0.0%
2 1.5% 0.0%
3 7.0% 7.7%
4 16.5% 5.1%
5 16.9% 18.1%

Table 4.2: MAPE values for the iterative scheduler and simplified MILP formulation

4.4 Overall Impact of Reconfiguration Speed

With the iterative scheduler and simplifiedMILP formulation implemented, it’s possible to

run the schedulers on synthetic workloads to gain some insight into the effects of improv-

ing reconfiguration speed. To begin, 10 workloads each consisting of 8 tasks were randomly

generated using the process described in section 3.4. The schedules were then produced us-

ing the iterative scheduler and simplified MILP formulation: the iterative scheduler giving

an upper bound on the actual optimal schedule makespan and the simplified MILP formu-

lation giving a lower bound.

Figure 4.5 gives the average schedulemakespanwith respect to the reconfiguration time per

resource unit. The results in this figure appear consistent with what was obtained for the

40 4. RESULTS

single example workload in figure 4.4. The makespan of the schedule appears to improve

significantly as the reconfiguration overhead approaches zero.

0 5 10 15 20 25 30
Reconfiguration time per resource unit, 𝑠𝑟

10000

20000

30000

40000

50000

Sc
he
du
le
m
ak
es
pa
n

Original Workload (Upper Bound)
Original Workload (Lower Bound)

Figure 4.5: Average makespan with respect to reconfiguration time per resource unit

In viewing the example schedules in section 4.2, the tasks transitioned frombeing scheduled

on the CPU to being scheduled on the FPGA as the reconfiguration speed improves. The

example schedules also showed that the tasks tended to be scheduled with larger, more

performant FPGA implementations as the reconfiguration speed improved. Figures 4.6,

4.7, and 4.8 are useful in checking if this pattern holds more generally. These figures are

based on the results of the iterative scheduler and use the same 10workloads used for figure

4.5.

Figure 4.6 shows the average number of software implementations used as 𝑠𝑟 varies. The fig-

ure shows that number of software implementations used decreases as the reconfiguration

speed improves. With no reconfiguration overhead, 𝑠𝑟 = 0, very few software implementa-

tions are used at all.

Figure 4.7 shows the average FPGA implementation size, the number of LC’s, as 𝑠𝑟 varies.

4.4. OVERALL IMPACT OF RECONFIGURATION SPEED 41

0 5 10 15 20 25 30
Reconfiguration time per resource unit, 𝑠𝑟

0

1

2

3

4

5

6

7

Av
er
ag

e
nu

m
be

ro
fs

of
tw

ar
e
im

pl
em

en
ta
tio

ns
sc

he
du

le
d

Figure 4.6: Use of software implementations with respect to reconfiguration time per re-
source unit

To obtain more clear results, the figure is based on a smaller range of 𝑠𝑟: from 0 to 3. Based

on figure 4.6, this is the range where FPGA implementations actually begin being used in

the schedule. Similar to what was seen in the example schedules in section 4.2, the sched-

ules change to using larger FPGA implementations as the reconfiguration speed improves.

This is interesting to note since it could have implications for how applications are devel-

oped for a device with extremely low reconfiguration overhead. To best take advantage of

such a device when optimizing for performance, it maymake sense for application develop-

ers to focus on developing larger andmore performant FPGA implementations than would

typically make sense on devices with slower reconfiguration speeds.

Figure 4.8 shows the average number of FPGA partitions which are used in the schedules.

With no reconfiguration overhead, 𝑠𝑟 = 0, the optimal schedules tend to use fewer FPGA

partitions. When considered along with the tendency to use larger FPGA implementations

when there is low reconfiguration overhead, it appears that these schedules tend to par-

42 4. RESULTS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Reconfiguration time per resource unit, 𝑠𝑟

1000

2000

3000

4000

5000

6000

7000

8000

A
ve
ra
ge
FP
G
A
im
pl
em

en
ta
tio
n
si
ze

Figure 4.7: Average FPGA implementation size with respect to reconfiguration time per
resource unit

tition the FPGA into fewer, larger regions. Assuming that this pattern holds for more re-

alistic workloads, it could have interesting implications for designing an FPGA with fast

reconfigurations. When there is almost no reconfiguration overhead, it might not be nec-

essary to support dynamic partial reconfiguration, where various portions of the FPGA can

be reconfigured at runtime. It might be sufficient to only support dynamic reconfiguration:

reconfiguring the entire FPGA at once. Not needing to support partial reconfiguration may

make such a device simpler to produce and it might not significantly impact its usefulness.

4.5. EFFECTS OF ADJUSTING RESOURCE VS. PERFORMANCE TRADE-OFF 43

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Reconfiguration time per resource unit, 𝑠𝑟

2

3

4

5

6

A
ve
ra
ge
nu
m
be
ro
fF
PG

A
pa
rt
iti
on
s

Figure 4.8: Average number of FPGA partitions with respect to reconfiguration time per
resource unit

4.5 Effects of AdjustingResource vs. PerformanceTrade-

Off

As seen in section 2.1.2, the exact FPGA resource vs. performance trade-off available will

depend on the application. In the case of cryptographic hash functions, some were able

to significantly improve performance by increasing the number of FPGA resources used

and some were not. To examine the impact of changing the exact resource vs. performance

trade-off, this section applied transformations to the 10workloads examined in the previous

section.

For figure 4.9, the execution times of all FPGA implementations were reduced by 70%. For

such a dramatic modification to the FPGA execution times, the figure shows a very limited

change. The workloads with improved FPGA implementations clearly perform better at

𝑠𝑟 = 0, but the difference is less clear at slower reconfiguration speeds.

44 4. RESULTS

0 5 10 15 20 25 30
Reconfiguration time per resource unit, 𝑠𝑟

0

10000

20000

30000

40000

50000

Sc
he
du
le
m
ak
es
pa
n

Original Workload (Upper Bound)
Original Workload (Lower Bound)
Improved Implementations (Upper Bound)
Improved Implementations (Lower Bound)

Figure 4.9: Effect of improving FPGA implementation performance on makespan. “Im-
proved Implementations” corresponds to reducing the runtime of FPGA implementations
in the original workloads by 70%.

For figure 4.10, the “Shifted Implementations” workloads were obtained by increasing the

execution time of all FPGA implementations by a factor of 4, except for the fastest FPGA

implementation of each task. The idea behind this is to model applications where larger

FPGA implementations are significantly faster than smaller FPGA implementations. Since

the original workloads and the “shifted” workloads share the same performant FPGA im-

plementations, they have the same average makespan at 𝑠𝑟 = 0. This is because when there

is no reconfiguration overhead, the fastest FPGA implementations tend to be used. Since

the other FPGA implementations are made slower for the “shifted” workloads, the average

makespan of these workloads is higher at slower reconfiguration speeds.

Based on these results, it appears that the exact FPGA resource vs. performance trade-

off available is an important factor in determining the effect of reconfiguration speed on

application performance. In further studies evaluating the usefulness of improving recon-

figuration speeds, it may make sense to determine exactly what resource vs. performance

4.6. EFFECTS OF RESTRUCTURING APPLICATIONS 45

trade-offs are possible for different classes of applications.

0 5 10 15 20 25 30
Reconfiguration time per resource unit, 𝑠𝑟

10000

20000

30000

40000

50000

Sc
he
du
le
m
ak
es
pa
n

Original Workload (Upper Bound)
Original Workload (Lower Bound)
Shifted Implementations (Upper Bound)
Shifted Implementations (Lower Bound)

Figure 4.10: Effect of worsening FPGA implementation performance on makespan

4.6 Effects of Restructuring Applications

The previous sections indicate that larger, more performant FPGA implementations tend

to be used when reconfiguration speed is fast. It’s then interesting to see if applications

can be restructured to better take advantage of this tendency. One possibility is to split an

application into finer grained tasks.

It’s conceivable that some applications have steps which may either be combined into a

single task or separated into different tasks. As an example, an application may need to

periodically compress and encrypt images that it receives. The compression and encryption

phases could either be modeled as a single task comprising both steps, or as two separate

tasks. An advantage of combining the two computations into a single task could be that

they are able to share some FPGA resources to be more efficient. A potential advantage

46 4. RESULTS

of splitting the two computations, on the other hand, is that the resulting tasks could be

run in serial by using DPR, with each computation using a larger portion of the total FPGA

resources.

A hypothetical example of this using imaginary values is given in table 4.3. For this hypo-

thetical example, we may assume that an FPGA has 1000 logic cells and that both encryp-

tion and compression allow for significant performance optimizations. Because the FPGA

does not contain enough resources, it’s necessary to split them into separate tasks before ap-

plying the possible performance optimizations. The separate encryption and compression

tasks require in total 0.6ms, compared to 1ms for the combined encryption and compression

task.

Encryption and Compression (Combined) Encryption Compression
Resources 1,000 LC 1,000 LC 1,000 LC

Execution Time 1ms 0.3ms 0.3ms

Table 4.3: Example of task splitting

Whether or not splitting a task may result in better performance depends on a few factors.

First, there should be a low amount of communication between the different steps and it

should be possible to run them one after the other. If the steps stream a significant amount

of data between each other, it may be infeasible to store this in memory to run the tasks

one after the other. Secondly, the computational steps should have a good performance

vs. resource trade-off. If the finer grained tasks are only slightly more performant when

using additional FPGA resources, it’s unlikely that splitting the task will offer much im-

provement. With the tasks split, there will also be an additional reconfiguration which is

required. Whether or not this optimization improves performance therefore depends on

the reconfiguration speed.

Figure 4.11 shows the effects of applying this task splitting optimization to randomly gener-

ated workloads. In particular, 10 workloads each containing 4 tasks were generated. These

workloads correspond to the “original workload” series in the figure. Based on these work-

loads, new workloads were generated by splitting each task 𝑡𝑖 into two tasks: 𝑡𝑎𝑖 and 𝑡
𝑏
𝑖 . The

software implementations of 𝑡𝑎𝑖 and 𝑡
𝑏
𝑖 both were given half the execution time of the corre-

sponding software implementation of 𝑡𝑖. The hardware implementations of 𝑡𝑎𝑖 and 𝑡
𝑏
𝑖 were

given the same execution time as the corresponding implementation of 𝑡𝑖, but each required

60% of the resources of 𝑡𝑖. Since the resource requirements of the split tasks is greater than

4.6. EFFECTS OF RESTRUCTURING APPLICATIONS 47

50%, this accounts for some resource overhead in splitting the tasks. In addition, the split

tasks 𝑡𝑎𝑖 and 𝑡
𝑏
𝑖 were each given an additional hardware implementation. This hardware

implementation requires approximately the same amount of resources as the largest hard-

ware implementation of 𝑡𝑖, but requires only one third of the execution time. Adding these

additional implementations results in a similar situation to that depicted in table 4.3

In figure 4.11, task splitting appears to result in a longermakespan at slower reconfiguration

speeds. This is likely due to the split FPGA implementations being larger than the combined

FPGA implementation, resulting in a longer time needed for reconfiguration. At 𝑠𝑟 = 0,

however, task splitting does result in a slightly lower makespan.

The improvement from task splitting shown in 4.11 is quite modest compared to the overall

improvement in makespan from improving reconfiguration speeds. This restructuring of

applications may result in even larger improvements, though, if tasks are split into even

finer grain tasks or if the possible performance vs. resource trade-off is better than what

was used in this model. One factor that may make this optimization unrealistic, though, is

that it assumes there is little communication between the split tasks and that the split tasks

may be run in serial. Many efficient FPGA implementations may stream large amounts of

data from one component to another. To split such applications into finer grained tasks and

run them in serial may require more data to be transferred to and from memory, adding a

significant overhead which outweighs any potential benefits.

48 4. RESULTS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Reconfiguration time per resource unit, 𝑠𝑟

2500

5000

7500

10000

12500

15000

17500

20000

Sc
he

du
le

m
ak

es
pa

n

Split Tasks (Lower Bound)
Split Tasks (Upper Bound)
Original Workload (Lower Bound)
Original Workload (Upper Bound)

Figure 4.11: Average effect of splitting tasks on schedule makespan

5

TOWARDS A LAGRANGIAN BASED SCHEDULER

5.1 Introduction

A limitation of the analysis in chapter 4 is that the gap between upper and lower bounds

on the schedule makespan was quite large. It would be interesting to obtain a smaller gap

between the upper and lower bounds on schedule makespan and also to make the itera-

tive scheduler require less time to find a solution. This would allow for obtaining more

clear results on the impact of reconfiguration times than what was obtained in the previ-

ous chapter. A more performant scheduler would also be useful for scheduling existing

real-world applications which use DPR.

An approach which is commonly used in optimization to accomplish these objectives is

the Lagrangian relaxation. Section 3.3.3 already gave the definition of a relaxation and

showed that the simplified scheduling problem was a relaxation of the MILP formulation

from Deiana et. al. Rather than simply ignoring constraints of the original problem, as was

done for obtaining the simplified scheduling problem, the Lagrangian relaxation involves

dualizing some constraints: removing them as actual constraints and incorporating them

in the objective function.

A more thorough discussion of the Lagrangian can be found in [28], but some definitions

will be included here. In particular, consider the following integer program 𝐼𝑃:

49

50 5. TOWARDS A LAGRANGIAN BASED SCHEDULER

𝑧 = min 𝑐𝑥

s.t. 𝐷𝑥 ≤ 𝑑,

𝑥 ∈ 𝑋

(5.1)

For any value of 𝑢 = (𝑢1, … , 𝑢𝑚) ≥ 0, we may then define the problem 𝐼𝑃(𝑢) as shown in

equation 5.2. This is done by removing the constraint 𝐷𝑥 ≤ 𝑑 and incorporating it into the

objective function.

𝑧(𝑢) = min 𝑐𝑥 − 𝑢(𝑑 − 𝐷𝑥)

s.t. 𝑥 ∈ 𝑋
(5.2)

Problem 𝐼𝑃(𝑢) is known as a Lagrangian relaxation of 𝐼𝑃 and it can be shown that 𝐼𝑃(𝑢) is a

relaxation of 𝐼𝑃meeting the definition given much earlier in definition 1. In particular, the

domain of 𝐼𝑃(𝑢) is a super-set of the domain of 𝐼𝑃, since we simply remove the constraint

𝐷𝑥 ≤ 𝑑. Also, for all 𝑥 ∈ 𝑋 satisfying 𝐷𝑥 ≤ 𝑑, we have that the objective function of 𝐼𝑃(𝑢)

is less than that of 𝐼𝑃. As a relaxation of 𝐼𝑃, 𝐼𝑃(𝑢) provides a dual bound, in this case a

lower bound, for any value of 𝑢. The vector 𝑢 is known as the Lagrangian multipliers. To

find the best possible dual bound, it’s necessary to then solve the Lagrangian Dual Problem:

𝑤𝐿𝐷 = max
ᵆ

𝑧(𝑢) (5.3)

Not only does the Lagrangian method provide dual bounds, but it may also be used in algo-

rithms for solving the original problem. One possibility is to develop heuristic algorithms

based on the Lagrangian relaxation [28]. The solutions to the Lagrangian relaxation 𝐼𝑃(𝑢)

may become quite close to being primal feasible solutions. In this case, it can be possible

to devise a heuristic algorithm which converts a solution of the Lagrangian relaxation to a

solution of the original problem. The bounds from the Lagrangian relaxation may also be

used in developing a branch and bound algorithm for solving the original problem [8].

This chapter presents an attempt at applying theLagrangian relaxation to theFPGAschedul-

ing problem, but falls short of obtaining a strong lower bound. This chapter will outline the

approach that was taken, clarify why it may have yielded poor results, and provide ideas for

how the Lagrangian relaxation could be better applied.

5.2. CONNECTIONWITH 𝑅‖𝐶𝑀𝐴𝑋 51

5.2 Connection with 𝑅‖𝐶𝑚𝑎𝑥

The FPGA scheduling problem is related to a classic scheduling problem 𝑅‖𝐶max. This is

the problem of minimizing a schedule makespan on unrelated parallel machines [18].

More formally, let there be 𝑛 jobs 𝑗 = 1,… , 𝑛 and 𝑚 machines 𝑖 = 1, … ,𝑚. Also let the

processing time required by job 𝑗 onmachine 𝑖 be given by the parameter 𝑒𝑖𝑗. The scheduling

problem 𝑅‖𝐶max then consists of assigning each job to a machine, such that the makespan

for processing all jobs is minimized.

Martello et. al give a straightforward ILP formulation of this problem by introducing binary

variables 𝑥𝑖𝑗 [18]. 𝑥𝑖𝑗 is 1 if job 𝑖 is to be processed on machine 𝑚 and is 0 otherwise. The

formulation also introduces a variable 𝑧 which gives the makespan of the schedule. The

ILP formulation of 𝑅‖𝐶max can then be defined as:

min 𝑧

s.t.
𝑚
∑
𝑖=1

𝑥𝑖𝑗 = 1 (𝑗 = 1,… , 𝑛),

𝑛
∑
𝑗=1

𝑒𝑖𝑗𝑥𝑖𝑗 ≤ 𝑧 (𝑖 = 1,… ,𝑚),

𝑥𝑖𝑗 ∈ {0, 1}

(5.4)

The simplified scheduling problem reduces to an 𝑅‖𝐶max problem when FPGA partition

sizes 𝑢𝑟,𝑝 are fixed. The FPGA partitions and CPU cores correspond to machines, and each

task must still be scheduled exactly once with the objective of minimizing makespan. One

difference is that the simplified scheduling problem allows for the scheduler to select from

multiple implementations and contains FPGA resource constraints. With the FPGA par-

tition sizes 𝑢𝑟,𝑝 fixed, however, a task scheduled to an FPGA partition will simply use the

fastest possible implementation which fits.

In particular, for all tasks 𝑡 and all FPGA partitions 𝑝 ∈ 𝑃𝐻𝑊 we may define the execution

time 𝑒𝑡,𝑝 as the shortest amount of time needed to reconfigure and execute task 𝑡 using an

implementation which fits on FPGA partition 𝑝. For all tasks 𝑡 and all CPU cores 𝑝 ∈ 𝑃𝑆𝑊,

we may similarly define the execution time 𝑒𝑡,𝑝 as the shortest time needed to execute task

𝑡 on component 𝑝.

An interesting result regarding 𝑅‖𝐶max from Martello, Soumis, and Toth applies the La-

52 5. TOWARDS A LAGRANGIAN BASED SCHEDULER

grangian relaxation to the problem [18]. Given the similarity between 𝑅‖𝐶max and FPGA

scheduling, it appears plausible to try and reuse their same techniques in solving the FPGA

scheduling problem.

5.3 Lagrangian Relaxation of the Simplified Scheduling

Problem

Anatural choicewould be to try and apply the Lagrangian relaxation to the fullmodel of the

FPGA scheduling problem from Deiana et. al. This could potentially improve the perfor-

mance of the scheduler and be used to obtain stronger lower bounds than the bounds pro-

vided by the simplified scheduling problem. This proved to be very complicated, however.

In order to model all of the details of FPGA reconfigurations, the full scheduling model

contains over twenty different types of constraints. Instead, this chapter will propose an

application of the Lagrangian relaxation to the simplified scheduling problem introduced

in section 3.3. This simplified scheduling problem is much simpler, and applying the La-

grangian relaxation will be more straightforward as a result.

The decision to apply the Lagrangian relaxation to the simplified FPGA scheduling prob-

lem is questionable, though. The simplified scheduling problem is already a relaxation of

the model of Deiana et. al, so relaxing the simplified scheduling problem further isn’t so

beneficial. The simplified scheduling problem is already solvable in a reasonable amount

of time, so it isn’t so valuable to improve its performance with algorithms based on the La-

grangian relaxation. Nevertheless, one potential benefit of doing this is to gain some insight

into how the Lagrangian relaxation could be applied to the full scheduling problem.

To make the presentation more clear, the MILP formulation of the simplified scheduling

problem originally shown in equation3.2 is copied here:

5.3. LAGRANGIAN RELAXATION OF THE SIMPLIFIED SCHEDULING PROBLEM 53

minimize 𝑧 (5.5a)

subject to

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑡=𝑡′

𝑥𝑡,𝑝,𝑖 = 1 ∀𝑡′ ∈ 𝑇, (5.5b)

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′

(𝑙𝑖 + ∑
𝑟∈𝑅

𝑠𝑟 ⋅ 𝑜𝑐𝑖,𝑟)𝑥𝑡,𝑝,𝑖 ≤ 𝑧 ∀𝑝′ ∈ 𝑃𝐻𝑊, (5.5c)

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′

𝑙𝑖 ⋅ 𝑥𝑡𝑝𝑖 ≤ 𝑧 ∀𝑝′ ∈ 𝑃𝑆𝑊, (5.5d)

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′,𝑡=𝑡′

𝑜𝑐𝑖,𝑟 ⋅ 𝑥𝑡,𝑝,𝑖 ≤ 𝑢𝑟,𝑝 ∀𝑝′ ∈ 𝑃𝐻𝑊, 𝑡′ ∈ 𝑇, 𝑟′ ∈ 𝑅, (5.5e)

∑
𝑝∈𝑃𝐻𝑊

𝑢𝑟,𝑝 ≤ 𝑚𝑎𝑥𝑅𝑒𝑠𝑟 ∀𝑟′ ∈ 𝑅, (5.5f)

𝑥𝑡,𝑝,𝑖 ∈ {0, 1} ∀(𝑡, 𝑝, 𝑖) ∈ 𝑇𝑃𝐼 (5.5g)

For the Lagrangian relaxation, it’s necessary to select which constraints to dualize. This

selection has implications for how challenging the Lagrangian relaxation is to solve and

how tight the resulting bound is. As will be shown later on, dualizing constraints 5.5b

and 5.5e allows for a relatively performant algorithm for solving the Lagrangian relaxation.

By removing these particular constraints and incorporating them in the objective function,

valid schedules no longer need to run tasks exactly once or respect the resource limitations

of each component.

While the relaxation allows for tasks to be scheduled multiple times, it may make sense

to limit this. Adding the cutting planes given in equation 5.6 restricts each task to being

scheduled once per component. This prevents the same task from being scheduledmultiple

times on a given component using different implementations. Adding this cutting plane

doesn’t significantly complicate solving the Lagrangian relaxation.

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑡=𝑡′,𝑝=𝑝′

𝑥𝑡,𝑝,𝑖 ≤ 1 ∀𝑡′ ∈ 𝑇, 𝑝′ ∈ 𝑃 (5.6)

Additionally, it helps to add cutting planes restricting the possible values of 𝑧. It will be

shown later on that this simplifies the algorithm for solving the Lagrangian relaxation.

Given a lower bound 𝑧𝐿 and upper bound 𝑧𝑈 on the optimal schedule makespan from the

54 5. TOWARDS A LAGRANGIAN BASED SCHEDULER

primal problem, the MILP formulation 5.5, constraints 𝑧𝐿 ≤ 𝑧 and 𝑧 ≤ 𝑧𝑈 are added to the

Lagrangian relaxation.

In dualizing constraints 5.5b, it’s necessary to introduce Lagrangian multipliers 𝜆𝑡 for all

tasks 𝑡 ∈ 𝑇. Similarly, dualizing constraints 5.5e introduces Lagrangian multipliers 𝜋𝑝,𝑡,𝑟
for all combinations of FPGA components 𝑝 ∈ 𝑃𝐻𝑊, tasks 𝑡 ∈ 𝑇, and resource types 𝑟 ∈ 𝑅.

Let 𝜆 be a vector of themultipliers 𝜆𝑡 and𝜋 a vector of themultipliers𝜋𝑝,𝑡,𝑟. Since constraint

5.5b is an equality, the multipliers 𝜆𝑡 may be positive or negative. The multipliers 𝜋𝑝,𝑡,𝑟
must be positive. The resulting Lagrangian relaxation is then subject to constraints 5.5c,

5.5d, 5.5f, 5.5g, and 5.6 and optimizes the following objective function:

𝐿(𝜆, 𝜋) = min [𝑧 − ∑
𝑡′∈𝑇

𝜆𝑡′(∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑡′=𝑡

𝑥𝑡,𝑝,𝑖 − 1)

− ∑
𝑝′∈𝑃𝐻𝑊

∑
𝑡′∈𝑇

∑
𝑟∈𝑅

𝜋𝑝′,𝑡′,𝑟(𝑢𝑟,𝑝′ − ∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑡′=𝑡,𝑝′=𝑝

𝑜𝑐𝑖,𝑟 ⋅ 𝑥𝑡,𝑝,𝑖)]
(5.7)

This objective function is obtained by dualizing constraints 5.5b and 5.5e with the standard

application of the Lagrangian relaxation. In this form, though, it’s not immediately clear

how to solve the Lagrangian relaxation problem. To make the problem more clear, it helps

to group variables so that they each appear in exactly one term of the objective function.

The objective function can then be rewritten into the following form:

𝐿(𝜆, 𝜋) = min [𝑧 + ∑
𝑡∈𝑇

𝜆𝑡

− ∑
𝑝′∈𝑃𝑆𝑊

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝′=𝑝

𝜆𝑡𝑥𝑡,𝑝,𝑖

− ∑
𝑝′∈𝑃𝐻𝑊

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝′=𝑝

(𝜆𝑡 − ∑
𝑟∈𝑅

𝜋𝑝,𝑡,𝑟 ⋅ 𝑜𝑐𝑖,𝑟)𝑥𝑡,𝑝,𝑖

−∑
𝑟∈𝑅

∑
𝑝∈𝑃𝐻𝑊

(𝑢𝑟,𝑝 ⋅ ∑
𝑡∈𝑇

𝜋𝑝,𝑡,𝑟)]

(5.8)

This Lagrangian relaxation problem is similar to the one obtained byMartello et. al in their

work on 𝑅‖𝐶max. As they observed for 𝑅‖𝐶max, when the variable 𝑧 is fixed to any positive

integer value, this problem can be decomposed into independent 0-1 knapsack problems.

In particular, for all 𝑝′ ∈ 𝑃𝑆𝑊 the sub-problem 𝐿𝐿𝑆𝑊𝑝′ (𝜆, 𝑧)may be defined as:

5.3. LAGRANGIAN RELAXATION OF THE SIMPLIFIED SCHEDULING PROBLEM 55

𝐿𝐿𝑆𝑊𝑝′ (𝜆, 𝑧) = max ∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′

𝜆𝑡𝑥𝑡,𝑝,𝑖

s.t. ∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′

𝑙𝑖 ⋅ 𝑥𝑡,𝑝,𝑖 ≤ 𝑧,

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′,𝑡=𝑡′

𝑥𝑡,𝑝,𝑖 ≤ 1 ∀𝑡 ∈ 𝑇,

𝑥𝑡,𝑝,𝑖 ∈ {0, 1} ∀(𝑡, 𝑝, 𝑖) ∈ 𝑇𝑃𝐼

(5.9)

Similarly, for all 𝑝′ ∈ 𝑃𝐻𝑊 the sub-problem 𝐿𝐿𝐻𝑊
𝑝′ (𝜆, 𝜋, 𝑧)may be defined as:

𝐿𝐿𝐻𝑊
𝑝′ (𝜆, 𝜋, 𝑧) = max ∑

(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′
(𝜆𝑡 − ∑

𝑟∈𝑅
𝜋𝑝,𝑡,𝑟𝑜𝑐𝑖,𝑟) ⋅ 𝑥𝑡,𝑝,𝑖

s.t. ∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′

(𝑙𝑖 + ∑
𝑟∈𝑅

𝑠𝑟 ⋅ 𝑜𝑐𝑖,𝑟) ⋅ 𝑥𝑡,𝑝,𝑖 ≤ 𝑧,

∑
(𝑡,𝑝,𝑖)∈𝑇𝑃𝐼|𝑝=𝑝′,𝑡=𝑡′

𝑥𝑡,𝑝,𝑖 ≤ 1 ∀𝑡 ∈ 𝑇,

𝑥𝑡,𝑝,𝑖 ∈ {0, 1} ∀(𝑡, 𝑝, 𝑖) ∈ 𝑇𝑃𝐼

(5.10)

Sub-problems 𝐿𝐿𝐻𝑊
𝑝 and 𝐿𝐿𝑆𝑊𝑝 can be thought of as a scheduling problem for a single FPGA

reconfigurable region or software processor, respectively. Since the constraint 5.5b from

the original MILP formulation was relaxed, the same task may be scheduled multiple times

across the different sub-problems. Since 𝑧 is fixed for these sub-problems, they are essen-

tially instances of knapsack problems. In the case of 𝐿𝐿𝑆𝑊𝑝 , the parameter 𝑧 corresponds

to the size of the knapsack, 𝜆𝑡 corresponds to the value of items, and 𝑙𝑖 corresponds to the

weight of items. The cutting planes which limit one implementation being selected per task

make this problem a variant of the knapsack problem, rather than corresponding exactly to

the knapsack problem. It’s worth pointing out that 𝐿𝐿𝐻𝑊
𝑝 and 𝐿𝐿𝑆𝑊𝑝 aremaximization prob-

lems whereas the Lagrangian relaxation is a minimization problem. These sub-problems

contribute negatively to the overall objective function of the Lagrangian relaxation, so that

is why they are maximizing.

The final sub-problem, 𝐿𝐿𝑅𝑒𝑠𝑜ᵆ𝑟𝑐𝑒𝑟 (𝜋), may be defined for all resources 𝑟 ∈ 𝑅 as:

56 5. TOWARDS A LAGRANGIAN BASED SCHEDULER

𝐿𝐿𝑅𝑒𝑠𝑜ᵆ𝑟𝑐𝑒𝑟 (𝜋) = max ∑
𝑝∈𝑃𝐻𝑊

𝑢𝑟,𝑝 ⋅ ∑
𝑡∈𝑇

𝜋𝑝,𝑡,𝑟

s.t. ∑
𝑝∈𝑃𝐻𝑊

𝑢𝑟,𝑝 ≤ 𝑚𝑎𝑥𝑅𝑒𝑠𝑟
(5.11)

This sub-problem may be solved by determining 𝑝max = argmax𝑝∈𝑃𝐻𝑊
∑𝑡∈𝑇 𝜋𝑝,𝑡,𝑟. The

optimal solution is obtained by setting 𝑢𝑟,𝑝max = 𝑚𝑎𝑥𝑅𝑒𝑠𝑟 and setting 𝑢𝑟,𝑝 = 0 for 𝑝 ≠ 𝑝max.

If there are multiple partitions 𝑝1, … , 𝑝𝑛 which maximize the argmax value, they may each

be allocated the same amount of resources. In particular, an optimal solution is obtained

by setting 𝑢𝑟,𝑝𝑖 = 𝑚𝑎𝑥𝑅𝑒𝑠𝑟/𝑛 for the partitions 𝑝𝑖 where 𝑖 = 1, … , 𝑛 and otherwise 𝑢𝑟,𝑝 = 0.

Keeping the partitions symmetrical will make the Lagrangian relaxation easier to solve, as

will be explained in section 5.4.

Solving the collection of newly defined sub-problems for a given value of 𝑧 results in a

feasible solution to the Lagrangian relaxation problem. The resulting value of the objective

function 5.8 is then given by:

𝐿(𝜆, 𝜋, 𝑧) = 𝑧+∑
𝑡∈𝑇

𝜆𝑡− ∑
𝑝∈𝑃𝑆𝑊

𝐿𝐿𝑆𝑊𝑝 (𝜆, 𝑧)− ∑
𝑝∈𝑃𝐻𝑊

𝐿𝐿𝐻𝑊
𝑝 (𝜆, 𝜋, 𝑧)−∑

𝑟∈𝑅
𝐿𝐿𝑅𝑒𝑠𝑜ᵆ𝑟𝑐𝑒𝑟 (𝜋) (5.12)

An optimal solution to the Lagrangian relaxation problem, as opposed to simply any feasi-

ble solution, is needed in order to obtain a valid lower bound, though. When defining the

Lagrangian relaxation, the valid values of 𝑧were restricted to the range 𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝑈. An op-

timal solution to the Lagrangian relaxation problem can then be determined byminimizing

𝐿(𝜆, 𝜋, 𝑧) with respect to 𝑧:

𝐿(𝜆, 𝜋) = min
𝑧𝐿≤𝑧≤𝑧𝑈

𝐿(𝜆, 𝜋, 𝑧) (5.13)

Martello et. al arrived at the same form in their application of the Lagrangian relaxation to

𝑅‖𝐶max. They proposed a general way of improving lower bounds of this form by adding a

cutting constraint. While Martello et. al arrived at the following theorem for 𝑅‖𝐶max, their

proof holds for the simplified FPGA scheduling problem as well.

Theorem 1. Given any lower bound 𝐿 computed as 𝐿 = min𝑧𝐿≤𝑧≤𝑧𝑈 𝐿(𝑧), where 𝐿(𝑧) is a

valid lower bound when the optimal solution has value 𝑧, then

5.3. LAGRANGIAN RELAXATION OF THE SIMPLIFIED SCHEDULING PROBLEM 57

𝐿 = min{𝑧 ∶ 𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝑈 ∧ 𝐿(𝑧) ≤ 𝑧} (5.14)

is a valid lower bound dominating 𝐿, i.e., 𝐿 ≥ 𝐿.

Since equation 5.13 meets the criteria required by theorem 1, it’s possible to calculate an

even stronger lower bound 𝐿(𝜆, 𝜋). Not only does theorem 1 result in a better lower bound,

butMartello et. al observe that the value of 𝐿 can be determined through binary search over

𝑧. The only requirement is that 𝐿(𝜆, 𝜋, 𝑧) − 𝑧 is monotonic step-wise decreasing, which

is shown in lemma 1. Being able to apply binary search is particularly useful since each

calculation of 𝐿(𝜆, 𝜋, 𝑧) requires solving knapsack problems and may be computationally

expensive. Determining 𝐿(𝜆, 𝜋) by evaluating 𝐿(𝜆, 𝜋, 𝑧) for all 𝑧 from 𝑧𝐿 to 𝑧𝑈 would be less

efficient.

Because we perform binary search over 𝑧, it’s useful to assume that 𝑧 is an integer. For sim-

plicity, this analysis will simply assume that all parameters and variables of the scheduling

problem are integer. It may be possible to loosen this requirement with further work.

Lemma 1. 𝐿(𝜆, 𝜋, 𝑧) − 𝑧 is monotonic step-wise decreasing.

Proof. From equation 5.12 we have that:

𝐿(𝜆, 𝜋, 𝑧 + 1) =(𝑧 + 1) + ∑
𝑡∈𝑇

𝜆𝑡 − ∑
𝑝∈𝑃𝑆𝑊

𝐿𝐿𝑆𝑊𝑝 (𝜆, 𝑧 + 1)−

∑
𝑝∈𝑃𝐻𝑊

𝐿𝐿𝐻𝑊
𝑝 (𝜆, 𝜋, 𝑧 + 1) − ∑

𝑟∈𝑅
𝐿𝐿𝑅𝑒𝑠𝑜ᵆ𝑟𝑐𝑒𝑟 (𝜋)

(5.15)

Given that sub-problems 𝐿𝐿𝑆𝑊𝑝 and 𝐿𝐿𝐻𝑊
𝑝 are knapsack problems, reducing the size of the

knapsack will reduce their value (or leave it unchanged). This gives the following inequal-

ities:

𝐿𝐿𝑆𝑊𝑝 (𝜆, 𝑧) ≤ 𝐿𝐿𝑆𝑊𝑝 (𝜆, 𝑧 + 1)

𝐿𝐿𝐻𝑊
𝑝 (𝜆, 𝜋, 𝑧) ≤ 𝐿𝐿𝐻𝑊

𝑝 (𝜆, 𝜋, 𝑧 + 1)
(5.16)

Taken together, equations 5.15 and 5.16 imply that:

58 5. TOWARDS A LAGRANGIAN BASED SCHEDULER

𝐿(𝜆, 𝜋, 𝑧 + 1) ≤ (𝑧 + 1) + ∑
𝑡∈𝑇

𝜆𝑡 − ∑
𝑝∈𝑃𝑆𝑊

𝐿𝐿𝑆𝑊𝑝 (𝜆, 𝑧)−

∑
𝑝∈𝑃𝐻𝑊

𝐿𝐿𝐻𝑊
𝑝 (𝜆, 𝜋, 𝑧) − ∑

𝑟∈𝑅
𝐿𝐿𝑅𝑒𝑠𝑜ᵆ𝑟𝑐𝑒𝑟 (𝜋)

= 1 + 𝐿(𝜆, 𝜋, 𝑧)

(5.17)

Rearranging this inequality then shows that 𝐿(𝜆, 𝜋, 𝑧 + 1) − (𝑧 + 1) ≤ 𝐿(𝜆, 𝜋, 𝑧) − 𝑧.

In order to apply this approach, it’s necessary to obtain initial upper and lower bounds on

the schedule makespan. As a lower bound, a weak bound may be obtained by finding for

each task the shortest amount of time needed to execute it. The longest such time is then a

valid lower bound. This lower bound is given in equation 5.18. The function 𝑡𝑖𝑚𝑒(𝑖) is the

time needed to execute the implementation, with 𝑡𝑖𝑚𝑒(𝑖) = 𝑙𝑖 for software implementations

and 𝑡𝑖𝑚𝑒(𝑖) = 𝑙𝑖+∑𝑟∈𝑅 𝑠𝑟 ⋅𝑜𝑐𝑖,𝑟 for FPGA implementations. 𝐼𝑡 is the set of implementations

compatible with task 𝑡.

𝑧𝐿 = max
𝑡∈𝑇

min
𝑖∈𝐼𝑡

𝑡𝑖𝑚𝑒(𝑖) (5.18)

For the upper bound, it’s possible to assume that every task runs in serial using the slowest

implementations available. This is given by the equation 5.19.

𝑧𝑈 = ∑
𝑡∈𝑇

max
𝑖∈𝐼𝑡

𝑡𝑖𝑚𝑒(𝑖) (5.19)

5.4 Simplification for Solving theLagrangianRelaxation

Asdescribed in the previous section, the solution to the Lagrangian relaxation𝐿(𝜆, 𝜋) can be

found by a binary search over values of 𝑧. With each value of 𝑧, it will be necessary to solve

the sub-problems 𝐿𝐿𝑆𝑊𝑝 and 𝐿𝐿𝐻𝑊
𝑝 for all components 𝑝 ∈ 𝑃 and additionally 𝐿𝐿𝑅𝑒𝑠𝑜ᵆ𝑟𝑐𝑒𝑟 for

all 𝑟 ∈ 𝑅. As 𝐿𝐿𝑆𝑊𝑝 and 𝐿𝐿𝐻𝑊
𝑝 are problems are knapsack problems, though, they may still

be computationally challenging to solve. Solving the Lagrangian relaxation may therefore

become especially complex.

Still, it’s possible tomake a simplification to the problemwhich wasn’t possible forMartello

5.4. SIMPLIFICATION FOR SOLVING THE LAGRANGIAN RELAXATION 59

et. al’s work on 𝑅‖𝐶max. Unlike in 𝑅‖𝐶max, the different FPGA components are all homoge-

neous. Similarly, the CPU components are all homogeneous. By selecting the Lagrangian

multipliers in a symmetric way, the sub-problems 𝐿𝐿𝐻𝑊
𝑝 and 𝐿𝐿𝑆𝑊𝑝 will be equivalent for all

𝑝 ∈ 𝑃𝐻𝑊 and 𝑝 ∈ 𝑃𝑆𝑊 respectively.

As a reminder, it’s possible to select any values for the Lagrangian multipliers and still ob-

tain a valid dual bound. By assigning 𝜋𝑝𝑖,𝑡,𝑟 = 𝜋𝑝𝑗,𝑡,𝑟 for all 𝑝𝑖, 𝑝𝑗 ∈ 𝑃𝐻𝑊, the resulting hard-

ware sub-problems are all identical. Rather than needing solve the sub-problems 𝐿𝐿𝐻𝑊
𝑝 for

all FPGA components 𝑝 ∈ 𝑃𝐻𝑊, it’s possible to solve once and reuse the same solution.

For any fixed value for the Lagrangian multipliers, the software sub-problems 𝐿𝐿𝑆𝑊𝑝 are all

equivalent as well. It’s therefore possible to similarly only solve one instance of 𝐿𝐿𝑆𝑊𝑝 . This

significantly reduces the time needed to solve the Lagrangian Relaxation 𝐿(𝜆, 𝜋).

While setting theLagrangianmultipliers in such away simplifies the computation of 𝐿(𝜆, 𝜋),

it’s not immediately clear whether such multipliers can result in a good lower bound. For-

tunately, the highest possible lower bound is obtainable with 𝜋 which are symmetric over

the hardware partitions. This is proved in the following Theorem.

Theorem 2. Suppose that the Lagrangian dual problem is bounded: there exists some par-

ticular Lagrangian multipliers which maximize the Lagrangian relaxation. Then there exist

multipliers 𝜆∗, 𝜋∗ such that:

1. The 𝜋∗ multipliers are symmetric over 𝑝: 𝜋∗𝑝𝑖,𝑡,𝑟 = 𝜋∗𝑝𝑗,𝑡,𝑟 for all 𝑝𝑖, 𝑝𝑗 ∈ 𝑃𝐻𝑊, 𝑡 ∈ 𝑇,

𝑟 ∈ 𝑅.

2. The multipliers 𝜆∗ and 𝜋∗ result in an optimal bound. For all other 𝜆 and 𝜋, we have

that 𝐿(𝜆∗, 𝜋∗) ≥ 𝐿(𝜆, 𝜋).

Proof. The proof follows from the fact that 𝐿(𝜆, 𝜋) is subdifferantiable everywhere and that

the FPGA partitions are essentially identical with each other.

Suppose that there exist optimal multipliers 𝜆′ and 𝜋′ such that 𝜋′𝑝𝑖,𝑡,𝑟 ≠ 𝜋′𝑝𝑗,𝑡,𝑟 for some

𝑝𝑖, 𝑝𝑗 ∈ 𝑃𝐻𝑊, 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅. Consider the set of permutations of permutations of 𝑃𝐻𝑊 given

by 𝑆𝑦𝑚(𝑃𝐻𝑊) = {𝛼 ∶ 𝑃𝐻𝑊 ↦ 𝑃𝐻𝑊 | 𝛼 is a permutation of 𝑃𝐻𝑊}. For each permutation

𝛼𝑖 ∈ 𝑆𝑦𝑚(𝐺), let Α𝑖 be a corresponding function on the Lagrangian multipliers 𝜋 which

sets Α𝑖(𝜋𝑝,𝑡,𝑟) = 𝜋𝛼𝑖(𝑝),𝑡,𝑟. Since Α is essentially just renaming the FPGA partitions, the

value of the Lagrangian relaxation is unchanged. In particular this applies to the optimal

multipliers 𝜆′ and 𝜋′: 𝐿(𝜆′, Α𝑖(𝜋′)) = 𝐿(𝜆′, 𝜋′) for all permutations Α𝑖.

60 5. TOWARDS A LAGRANGIAN BASED SCHEDULER

Based on Α𝑖, it’s possible to define a new multiplier 𝜋∗ by averaging the different permuta-

tions of 𝜋′. This is given in equation 5.20. It can be shown that the resulting𝜋∗ is symmetric

over𝑝 ∈ 𝑃𝐻𝑊 as defined in part 1 of the theorem. For defining 𝜆∗, wemay simply set 𝜆∗ = 𝜆′.

𝜋∗ = 1
|𝑆𝑦𝑚(𝑃𝐻𝑊)|

⋅ ∑
𝛼𝑖∈𝑆𝑦𝑚(𝑃𝐻𝑊)

Α𝑖(𝜋′) (5.20)

It then remains to show that 𝐿(𝜆∗, 𝜋∗) = 𝐿(𝜆′, 𝜋′). In general, the Lagrangian relaxation

is concave (or convex depending on whether the problem is minimizing or maximizing).

Given that 𝜆∗, 𝜋∗ are obtained from a convex combination of the 𝜆′ and Α𝑖(𝜋′)multipliers,

𝐿(𝜆, 𝜋) is concave, and 𝐿(𝜆′, Α𝑖(𝜋′)) are all equal, we have that 𝐿(𝜆∗, 𝜋∗) ≥ 𝐿(𝜆′, 𝜋′). Since

𝐿(𝜆′, 𝜋′) is optimal, condition 2 of the theorem is satisfied.

5.5 Results

In order to evaluate this Lagrangian relaxation, an implementationwas done in python. For

optimizing the Lagrangian dual problem, both the subgradient and bundle methods were

tested. The subgradient and bundle methods were not implemented from scratch, and a

library nsopy [26] was used instead.

To evaluate the bounds from the Lagrangian relaxation, the bounds were compared against

the result of the simplified scheduling problem MILP formulation and the naive lower

bound 𝑧𝐿. The Lagrangian relaxation occasionally produced a slightly better lower bound

than 𝑧𝐿, but the lower boundwas alwaysmuch less than the result of the simplified schedul-

ing problem. Overall, the resulting bounds from the Lagrangian relaxation showed almost

no improvement over 𝑧𝐿.

Given that this application of the Lagrangian relaxation is so similar to that of Martello et.

al for 𝑅‖𝐶max, it’s interesting that it producedmuchworse results. One possible explanation

is that the solutions to the relaxation of the simplified FPGA scheduling problem tends to

diverge more from actual solutions to the primal problem. Since an identical sub-problem

𝐿𝐿𝐻𝑊
𝑝 is used for all FPGA components, either a given task will be scheduled |𝑃𝐻𝑊| times

or it will not be scheduled at all. In 𝑅‖𝐶max, the machines are heterogeneous so, depend-

ing on the values of the Lagrangian multipliers, it’s possible that tasks are scheduled more

closely to one time, as required in the primal problem. More investigationwould be needed,

5.5. RESULTS 61

though, to determine exactlywhy the bounds from the Lagrangian relaxation proposed here

are so weak.

Rather than applying theLagrangian relaxation to the simplified scheduling problem,which

can already be solved by an MILP solver quite quickly, a better approach could be to apply

the technique to the full FPGA scheduling problem. Rather than relaxing the constraints

that each task is run once, as was done in this chapter, it may make sense to relax differ-

ent constraints to obtain a better lower bound. One option, for example, may be to dualize

the constraint that only one reconfiguration may take place at a time. This constraint was

simply removed in section 3.3.1, but dualizing the constraint instead may result in better

bounds.

The Lagrangian relaxationmethod has a been applied to many different optimization prob-

lems with great success. Even though this attempt at applying it to the FPGA scheduling

problem was unsuccessful, there is some potential that it’s possible to achieve good results

with more investigation.

6

CONCLUSION

The ability to build faster and cheaper computers by shrinking the size of transistors is

potentially approaching physical limitations. Given this development, now may be a par-

ticularly interesting time for the creation of novel approaches to build more efficient com-

puters. FPGA’s are already demonstrated to be significantly more efficient than the CPU

for many different classes of applications. Similarly, dynamic partial reconfiguration is a

well researched technology which is already used to better utilize FPGA resources. Further

developing this technology is then a promising way of having more efficient computation.

One bottleneck in using DPR is that the overhead time of reconfiguration is still high. A

breakthrough in improving reconfiguration speeds could come from 3D microelectronic

packaging. This technology is already being used inXilinx high bandwidthmemory devices

to package an FPGA and memory, allowing for a very high bandwidth of memory access.

It’s very plausible that this same technology could be adapted to reduce the overhead of

reconfiguration.

6.1 Contributions

The objective of this thesis was to evaluate the potential performance improvement that

could result from significantly reducing the reconfiguration overhead. To this end, a model

of FPGA scheduling was proposed which is a specialized case of the model from Deiana et.

al [7].

62

6.1. CONTRIBUTIONS 63

While it is possible to simply apply the exact or heuristic schedulers fromDeiana et. al, both

approaches have downsides. The exact scheduler has a very long runtime, which makes it

unsuitable for evaluating more complex applications consisting of many tasks. The heuris-

tic scheduler has a lower runtime, but this comes at the cost of precision. It may be the case

that the heuristic scheduler functions better at faster or slower reconfiguration speeds, and

this could bias the results of evaluating the impact of reconfiguration speed.

Towork around this limitation, a relaxed version of the scheduling problemwas introduced

which can be used to obtain a lower bound schedule makespan. This lower bound can then

be used to evaluate how precise the the results of the heuristic scheduler are.

Using the heuristic scheduler fromDeiana et. al in conjunctionwith the relaxed scheduling

problem to obtain lower bounds, the impact of reconfiguration speed was evaluated for a

sample of random applications. Given that the randomly generated applications may not

be consistent with real-world applications, it’s not possible to draw any conclusions yet on

what performance improvements can be obtained by improving reconfiguration speeds.

Instead, some overall trends were studied.

As reconfiguration speed improves, the sample applications tended to use the FPGA more

frequently instead of the CPU. With very fast reconfiguration speeds, the sample applica-

tions also tended to transition to using larger FPGA implementationswhich trade-off FPGA

resources for performance. The exact resource vs. performance trade-off available for an

application appears to have an effect on how large of a performance improvement is ob-

tainable by increasing reconfiguration speeds.

Based on this tendency for applications to trade-off resources for performance as reconfig-

uration speed improves, a potential optimization was also studied. In this optimization,

tasks of an application are divided and run in serial, allowing the divided tasks to each use

more FPGA resources. This optimization had little impact compared to the overall bene-

fits of improving reconfiguration speed and it is questionable to what extent it could apply

to real-world applications. Still, it’s possible that structuring applications in this way may

allow them to better take advantage of improved reconfiguration speeds.

The analysis of the sample workloads was quite limited. The heuristic scheduler of Deiana

et. al was much faster than the exact scheduler, but it nevertheless was time consuming

for scheduling many sample workloads, each with many tasks. The relaxed scheduling

problem also offered quite weak lower bounds, making it challenging to evaluate the po-

64 6. CONCLUSION

tential impact of improved reconfiguration speeds. In an attempt to resolve both of these

limitations, the Lagrangian relaxation method was evaluated. The attempt to apply the La-

grangian relaxation was unsuccessful, but the Lagrangian relaxation still appears to be a

potentially useful technique to apply to FPGA scheduling.

6.2 Limitations

A fundamental limitation in this work is the use of unrealistic parameters to model the

FPGA and applications. The reconfiguration speeds, the total FPGA resources, and the

specification of applications used in this work weren’t specifically created based on real-

world values. The results obtained here are still useful for observing general patterns and

tendencies, which may be a useful starting point for future work. Nevertheless, given the

unrealistic parameters it isn’t possible to answer the question of exactly what performance

improvement could result from significantly improving reconfiguration speeds.

A clear and straightforward way to address this limitation would be to bring the parameters

of themodel into alignmentwith real-world values. For the reconfiguration speeds and total

FPGA resources, this would be relatively straightforward and only require investigating the

data-sheets of current FPGA models. Finding realistic parameters to specify applications -

the number of resources used in FPGA based implementations and the corresponding run-

times - will be more challenging, though. Since a benefit of faster reconfiguration speeds is

that applications may trade-off higher resource usage for improved performance, it’s neces-

sary to evaluate not only one FPGA based implementation of a given application, but rather

several, with each using a different resource vs. performance trade-off.

6.3 FutureWork

While the need for realistic model parameters as mentioned in the previous section is cer-

tainly important, it may already be practical to begin other approaches for evaluating the

research questions. Even with realistic parameters, models of the FPGA will always be

somewhat unrealistic. In the existing model considered in this thesis, some important fac-

tors aren’t modeled such as how much data must be communicated between components

of an application. Streaming data between application components, for example, may re-

6.3. FUTUREWORK 65

sult in completely different performance characteristics than storing data in an external

memory.

Rather than try to model applications as abstract sets of tasks, an interesting approach

would be to select an actual application which could benefit from improved reconfigura-

tion speeds and implement it to try and take full advantage of DPR. Since the FPGA’s un-

der investigation don’t actually exist yet, it would be necessary to somehow simulate the

application running on an FPGA with fast reconfiguration. Actually implementing a non-

trivial application to take advantage of fast reconfiguration speeds would require a signif-

icant amount of work, so it would be infeasible to do this for many applications. At best

this approach would offer a case study of what fast reconfiguration speeds could offer. Still,

the results may offer much more insight than what it is possible to obtain from an abstract

model.

Assuming an FPGAwith extremely low reconfiguration overhead is feasible, an immediate

challenge would be how to best utilize it. Currently, many developers are acclimated to pro-

ducing software, and developing applications for the FPGA using a hardware description

language represents a large shift. Even for FPGA developers, making more extensive use

of DPR could be challenging. Introducing new abstractions in programming languages or

frameworks may lower the barrier for running performance critical portions of an applica-

tion on an FPGA. Similarly, new abstractions in hardware description languages maymake

DPR more straightforward to use. Interesting work in this direction is already underway

[12, 3].

BIBLIOGRAPHY

[1] Gurobi optimization. MYYUX���\\\.LZWTGN.HTm�.

[2] Biondi, A., Balsini, A., Pagani, M., Rossi, E., Marinoni, M., and Buttazzo, G.

A framework for supporting real-time applications on dynamic reconfigurable fpgas.

In 2016 IEEE Real-Time Systems Symposium (RTSS) (2016), pp. 1–12.

[3] Bosch, J., Vidal, M., Filgueras, A., Jiménez-González, D., Álvarez, C., Mar-

torell, X., and Ayguadé, E. Task-based programming models for heterogeneous

recurrent workloads. In Applied Reconfigurable Computing. Architectures, Tools, and

Applications (Cham, 2021), S. Derrien, F. Hannig, P. C. Diniz, and D. Chillet, Eds.,

Springer International Publishing, pp. 108–122.

[4] Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Si-

irola, J. D., Watson, J.-P., and Woodruff, D. L. Pyomo–optimization modeling in

python, third ed., vol. 67. Springer Science & Business Media, 2021.

[5] Chodowiec, P., andGaj, K. Very compact fpga implementation of the aes algorithm.

In InternationalWorkshop on Cryptographic Hardware and Embedded Systems (2003),

Springer, pp. 319–333.

[6] DEIANA, E. A. Multiobjective reconfiguration-aware scheduling on fpga-based

heterogeneous architectures. Master’s thesis, University of Illinois at Chicago,

2015. MYYUX���NSdNLT.ZNH.JdZ�FWYNHQJX�YMJXNX�MZQYNTGOJHYN[JD

RJHTSKNLZWFYNTS�A\FWJD8HMJdZQNSLDTSD+5,A�'FXJdD-JYJWTLJSJTZXD

AWHMNYJHYZWJX���������.

66

https://www.gurobi.com/
https://indigo.uic.edu/articles/thesis/Multiobjective_Reconfiguration-Aware_Scheduling_on_FPGA-Based_Heterogeneous_Architectures/10819241
https://indigo.uic.edu/articles/thesis/Multiobjective_Reconfiguration-Aware_Scheduling_on_FPGA-Based_Heterogeneous_Architectures/10819241
https://indigo.uic.edu/articles/thesis/Multiobjective_Reconfiguration-Aware_Scheduling_on_FPGA-Based_Heterogeneous_Architectures/10819241

BIBLIOGRAPHY 67

[7] Deiana, E. A., Rabozzi, M., Cattaneo, R., and Santambrogio, M. D. A multiob-

jective reconfiguration-aware scheduler for fpga-based heterogeneous architectures.

In 2015 International Conference on ReConFigurable Computing and FPGAs (ReCon-

Fig) (2015), IEEE, pp. 1–6.

[8] Fisher, M. L. The lagrangian relaxation method for solving integer programming

problems. Management science 27, 1 (1981), 1–18.

[9] Gueron, S. Intel advanced encryption standard (aes) new instruc-

tions set. MYYUX���\\\.NSYJQ.HTm�HTSYJSY�dFm�dTH�\MNYJ�UFUJW�

Fd[FSHJd�JSHW^UYNTS�XYFSdFWd�SJ\�NSXYWZHYNTSX�XJY�UFUJW.UdK, 2010.

[10] Hart, W. E., Watson, J.-P., and Woodruff, D. L. Pyomo: modeling and solv-

ing mathematical programs in python. Mathematical Programming Computation 3,

3 (2011), 219–260.

[11] Homsirikamol, E., Rogawski, M., and Gaj, K. Throughput vs. area trade-offs in

high-speed architectures of five round 3 sha-3 candidates implemented using xilinx

and altera fpgas. In Cryptographic Hardware and Embedded Systems – CHES 2011

(Berlin, Heidelberg, 2011), B. Preneel and T. Takagi, Eds., Springer Berlin Heidelberg,

pp. 491–506.

[12] Jungblut, P., and Kranzlmüller, D. Dynamic spatial multiplexing on fpgas with

opencl. In Applied Reconfigurable Computing. Architectures, Tools, and Applications

(Cham, 2021), S. Derrien, F. Hannig, P. C. Diniz, and D. Chillet, Eds., Springer Inter-

national Publishing, pp. 265–274.

[13] Kalms, L., and Gohringer, D. Exploration of OpenCL for FPGAs using SDAccel

and comparison to GPUs and multicore CPUs. In 2017 27th International Conference

on Field Programmable Logic and Applications (FPL) (Sept. 2017), IEEE.

[14] Kuon, I., andRose, J. Measuring the gap between fpgas and asics. IEEETransactions

on computer-aided design of integrated circuits and systems 26, 2 (2007), 203–215.

[15] Ldvbin. Clb block diagram. MYYUX���HTmmTSX.\NPNmJdNF.TWL�\NPN�+NQJ�(1'D

'QTHPDDNFLWFm.USL. Accessed 05-08-21, distributed under CC-BY 3.0 license.

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://commons.wikimedia.org/wiki/File:CLB_Block_Diagram.png
https://commons.wikimedia.org/wiki/File:CLB_Block_Diagram.png
https://creativecommons.org/licenses/by-sa/3.0/deed.en

68 BIBLIOGRAPHY

[16] Li, Y., and Goyal, D. Introduction to 3D Microelectronic Packaging. Springer Singa-

pore, Singapore, 2021, pp. 1–16.

[17] Mack, C. A. Fifty years of moore’s law. IEEE Transactions on semiconductor manu-

facturing 24, 2 (2011), 202–207.

[18] Martello, S., Soumis, F., and Toth, P. Exact and approximation algorithms for

makespanminimization on unrelated parallelmachines. Discrete appliedmathematics

75, 2 (1997), 169–188.

[19] Paar, C., and Pelzl, J. Understanding cryptography: a textbook for students and prac-

titioners. Springer Science & Business Media, 2009.

[20] Ripoll, I., Crespo, A., and Mok, A. K. Improvement in feasibility testing for real-

time tasks. Real-Time Systems 11, 1 (1996), 19–39.

[21] Sirowy, S., and Forin, A. Where’s the beef? why fpgas are so fast. MS Research

(2008).

[22] Theis, T. N., andWong, H.-S. P. The end of moore’s law: A new beginning for infor-

mation technology. Computing in Science & Engineering 19, 2 (2017), 41–50.

[23] Tofallis, C. A better measure of relative prediction accuracy for model selection and

model estimation. Journal of the Operational Research Society 66, 8 (2015), 1352–1362.

[24] Trimberger, S., Carberry, D., Johnson, A., and Wong, J. A time-multiplexed

fpga. In Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines Cat. No. 97TB100186) (1997), IEEE, pp. 22–28.

[25] Vipin, K., and Fahmy, S. A. Fpga dynamic and partial reconfiguration: A survey of

architectures, methods, and applications. ACM Comput. Surv. 51, 4 (July 2018).

[26] Vujanic, R., and Esfahani, P. M. Nsopy. MYYUX���LNYMZG.HTm�WTGNS�[OH�

SXTU^. Accessed 13-08-21.

[27] Wang, C., Gong, L., Yu, Q., Li, X., Xie, Y., and Zhou, X. Dlau: A scalable deep

learning accelerator unit on fpga. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 36, 3 (2016), 513–517.

https://github.com/robin-vjc/nsopy
https://github.com/robin-vjc/nsopy

BIBLIOGRAPHY 69

[28] Wolsey, L. A. Integer Programming, first ed. Wiley-Interscience, 1998.

[29] Xilinx. Power methodology guide ug786. MYYUX���\\\.]NQNS].HTm�XZUUTWY�

dTHZmJSYFYNTS�X\DmFSZFQX�]NQNS]��D��ZL���D5T\JWMJYMTdTQTL^.UdK. Ac-

cessed 06-08-21.

[30] Xilinx. Ultrascale architecture configuration ug-570. MYYUX���\\\.]NQNS].HTm�

XZUUTWY�dTHZmJSYFYNTS�ZXJWDLZNdJX�ZL����ZQYWFXHFQJ�HTSKNLZWFYNTS.

UdK. Accessed 09-08-21.

[31] Xilinx. Ultrascale architecture dsp slice ug-579. MYYUX���\\\.]NQNS].HTm�

XZUUTWY�dTHZmJSYFYNTS�ZXJWDLZNdJX�ZL����ZQYWFXHFQJ�dXU.UdK. Accessed

06-08-21.

[32] Xilinx. Ultrascale architecture memory resources ug-573. MYYUX�

��\\\.]NQNS].HTm�XZUUTWY�dTHZmJSYFYNTS�ZXJWDLZNdJX�

ZL����ZQYWFXHFQJ�mJmTW^�WJXTZWHJX.UdK. Accessed 06-08-21.

[33] Xilinx. Virtex ultrascale+ fpga data sheet ds-923. MYYUX���\\\.]NQNS].HTm�

XZUUTWY�dTHZmJSYFYNTS�dFYFDXMJJYX�dX����[NWYJ]�ZQYWFXHFQJ�UQZX.

UdK. Accessed 09-08-21.

[34] Xilinx. Virtex ultrascale+ hbm fpga: A revolutionary increase in memory perfor-

mance. MYYUX���\\\.]NQNS].HTm�XZUUTWY�dTHZmJSYFYNTS�\MNYJDUFUJWX�

\U����MGm.UdK. Accessed 13-08-21.

[35] Xilinx. Vivado design suite user guide: Partial reconfiguration ug-909. MYYUX�

��\\\.]NQNS].HTm�XZUUTWY�dTHZmJSYFYNTS�X\DmFSZFQX�]NQNS]����D��

ZL����[N[FdT�UFWYNFQ�WJHTSKNLZWFYNTS.UdK. Accessed 06-08-21.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug786_PowerMethodology.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug786_PowerMethodology.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf

	Introduction
	Background
	Research Questions
	Research Method
	Structure of Thesis

	Background
	FPGA's
	FPGA's In Comparison With Software
	FPGA Resource vs. Performance Trade-Offs
	Dynamic Partial Reconfiguration

	Improving Reconfiguration Speed
	3D Packaging
	DPR Schedulers
	Deiana et. al Scheduler
	FRED Real Time Framework

	Proposed Solution
	Definition of the Model
	Relevant Aspects To Model
	Model Definition

	Applying the Deiana et. al Scheduler
	Determining Schedule Lower Bounds
	Simplifying The Scheduling Problem
	MILP Formulation
	Verifying That A Lower Bound Is Provided
	Remarks on the Simplified MILP Formulation

	Generation of Workloads and Model Parameters

	Results
	Implementation and Setup
	Example Schedules
	Scheduler Evaluation
	Overall Impact of Reconfiguration Speed
	Effects of Adjusting Resource vs. Performance Trade-Off
	Effects of Restructuring Applications

	Towards a Lagrangian Based Scheduler
	Introduction
	Connection with RCmax
	Lagrangian Relaxation of the Simplified Scheduling Problem
	Simplification for Solving the Lagrangian Relaxation
	Results

	Conclusion
	Contributions
	Limitations
	Future Work

